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Lecture 39

Relevant sections in text: §5.6

Example: Auto-ionization of Helium (cont.)

We want to see how to compute the transition rate for auto-ionization of Helium using
Fermi’s Golden Rule:

w =
∫
dα

∫
E
dEρ(E)

2π
h̄
|Vγi|2δ(E − Ei) =

2π
h̄
ρ(Ei)

∫
dα |Vγi|2.

We take the initial state to be of the form

|initial〉 = |2, 0, 0〉 ⊗ |2, 0, 0〉.

(We are ignoring spin here, but since this part of the state vector is symmetric under
particle interchange the symmetrization postulate would demand that the total spin state
be a singlet.) The final state is of the form

|final〉 = |1, 0, 0〉 ⊗ |E, l,m〉,

where |E, l,m〉 is an energy eigenket in the continuum with E being the (unperturbed)
energy difference between the initial state and the energy of the electron in the 1S state.
(If we were worried about spin, we would have to symmetrize (anti-symmetrize) this state
if the final spin state were a singlet (triplet). As we shall see, only the singlet case is
relevant.) Because the ejected electron can have a continuous range of energies, the final
state of the system lies in the continuum.

Viewing the inter-electron repulsion as the perturbation:

V =
e2

| ~X1 − ~X2|
,

we need to compute the matrix elements:

〈initial|V |final〉 =
∫
d3x1 d

3x2 ψ
∗
200(r1)ψ∗200(r2)ψ100(r1)ψE,l,m(~r2)

(
e2

|~r1 − ~r2|

)
.

(Note that the initial state wave functions’ contribution to the integral is symmetric under
interchange of particles. This symmetrizes the final state wave functions’ contribution.
If we were taking account of spin, this matrix element would therefore vanish if the final
state was anti-symmetrized, as would occur in the triplet spin state. The matrix element
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forces the final state to be symmetric, hence a singlet, and is correct as it stands.) This
matrix element can be simplified by using the familiar multipole expansion:

1
|~r1 − ~r2|

= 4π
∑
l,m

1
2l + 1

rl<

rl+1
>

Y ∗lm(θ2, φ2)Ylm(θ1, φ1),

where r> (r<) is the greater (smaller) of r1 and r2. Because the ~r1 wave functions are
spherically symmetric, the matrix element vanishes for all the terms in the expansion
except the l = 0 term. This then gives a vanishing matrix element unless l = 0 in the wave
function for the ejected electron. Thus the transitions go from S states to S states. This
is an example of a selection rule. Roughly speaking, you can interpret this selection rule
as saying the ejected electron moves off in a radial direction only. Using the spherically
symmetric (delta-function normalized) hydrogenic wave function for an unbound electron
of energy E the integrations can be performed. I will not bother to write it all down here,
but we denote the result by V(E).

Next, let’s turn to the computation of the density of states factor which counts the
number of final states with the indicated energy. To keep things simple, we can approximate
the final state wave function for the ejected electron as that of a free particle with zero
angular momentum. It is not hard to check that the position wave function for a free
particle with energy E and l = 0 is of the form

ψk00(~r) =
1

π
√

2
sin(kr)
r

, E =
h̄2k2

2m
.

This is a simultaneous eigenfunction of (P 2, L2, Lz) with eigenvalues (2mE, 0, 0) and is
normalized so that ∫

d3xψ∗k00ψk′00 = δ(k − k′).

Summing over states with a given range of final energies can be accomplished by making
a change of variables k = 1

h̄

√
2mE so that

dk =
m

h̄
√

2mE
dE = ρ(E)dE.

Putting all this together, the transition rate w from the initial state to the final state
characterized by an ejected electron with energy E (detrmined as the difference between
the initial energy of the system and the energy of the bound electron in the ground state)
is given by

w =
2πm

h̄2√2mE
V(E).
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