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Lecture 34

Relevant sections in text: §5.1

Example: finite size of the atomic nucleus

One improvement on the simple particle-in-a-potential model of an atom takes account
of the fact that the atomic nucleus is not truly point-like but instead exhibits finite-size
structure in both its mass and charge distributions. It is possible to use perturbation
theory to get a quick look into the effect on atomic spectra of this feature. Of course, this
effect is one of a myriad of small corrections that need to be added to the atomic model.

Let us model the nucleus as a (very massive) uniform ball of total charge Ze with
radius r0. As a nice exercise in elementary electrostatics, you can check that the potential
energy

V (r) = −eφ

for such a charge distribution takes the form

V (r) =

−
Ze2
r for r ≥ r0

Ze2

2r0

[(
r
r0

)2
− 3
]
, for r ≤ r0.

I do not know if a closed form solution to the eigenvalue problem for the Hamiltonian

H =
P 2

2m
+ V

is known, but I doubt that such a solution exists. We well treat the potential energy due
to the finite size r0 of the nucleus as a perturbation of the usual Coulomb potential. To
this end we write

V (r) = V0(r) +B(r),

where

V0(r) = −Ze
2

r
, for r > 0,

and

B(r) =

 Ze2

2r0

[(
r
r0

)2
− 3 + 2r0

r

]
for 0 ≤ r ≤ r0,

0 for r ≥ r0.

The idea is then that, since the unperturbed energy eigenfunctions are non-trivial over a
range corresponding to the Bohr radius a (for the given Z), as long as r0 << a we expect
that the effect of the perturbation B will be small. We will make this more precise in a
moment.
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Recall that the energy eigenstates |n, l,m〉 have position wave functions given by

〈r|n, l,m〉 ≡ ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ),

where the Ylm are the usual spherical harmonics and

Rnl(r) = −

[(
2
na

)3 (n− l − 1)!
2n{(n+ l)!}3

]1/2

e−
r

na

(
2r
na

)l
L2l+1
n−l−1(

2r
na

),

with

a =
h̄2

Zmee2 , m = electron mass,

and L
p
q is the associated Laguerre polynomial. See the text for details. Note that a is the

Bohr radius for the hydrogenic atom with a given Z; it sets the scale for the atomic size.

Let us consider the first-order correction to the ground state of the atom due to this
perturbation. We choose the ground state for simplicity and since the ground state energy
is non-degenerate. The shift in the ground state energy is given by

∆E = 〈1, 0, 0|B|1, 0, 0〉.

Using the fact that

ψ100 =
2√

4πa3
e−

r
a ,

we find that (exercise)

∆E =
∫ r0

0
dr r2 2Ze2

r0a3

[(
r

r0

)2
− 3 +

2r0
r

]
e−

2r
a .

This integral can be computed explicitly. Try it! (I did it using Maple.) I am going to
give you the answer after it has been simplified with the assumption that r0 << a, which
is needed in any case to ensure that the perturbation is sufficiently small to render our
approximation scheme viable. In this case we get

∆E ≈
2Ze2r2

0
5a3 =

4
5
|Eground|

(r0
a

)2
,

r0
a
<< 1.

(I got this expression by having Maple perform a Taylor series expansion.) Thus the effect
of the finite size is to shift the energy upward and the scale of the shift is determined by(r0
a

)2.

To get a feel for the size of the correction, let us consider a couple of examples. For
hydrogen, we note that the charge radius of a proton is on the order of 10−15m and that
the Bohr radius is on the order of 10−10m so that the the perturbative correction is on
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the order of one part in 1010. Very small! There are physical systems in which the finite
size of the nucleus has a more pronounced effect. For example, one can consider “muonic
hydrogen”, consisting of a proton and a µ− muon. Muons are like electrons only much
more massive. For muonic hydrogen the Bohr radius is smaller by a factor of 10−2, leading
to an energy shift on the order of 1 part in 10−6. At the other extreme, consider a muonic
lead atom (a negatively charged muon bound to a lead nucleus). There we have that both
r0 and a are on the order of 10−15m. Hence here the finite size effect is as important as the
Coulombic effect. Note, however, that our perturbative approximation is no longer valid
since the effect of the perturbation is not “small” so this is at best a qualitative statement.

Let me finish this example with a few comments about the perturbative approxi-
mation to the ground state. To compute it we need to compute the matrix element
〈n, l,m|B|1, 0, 0〉, n 6= 1. Since the perturbation commutes with angular momentum, it
follows that this matrix element will be non-zero only if l = m = 0 (exercise). We then
have (exercise)

〈n, l,m|B|1, 0, 0〉 = δl0δm0

∫ r0

0
dr r2Rn0(r)R10(r)B(r).

Assuming that r0 << a, we can approximate Rnl(r) ≈ Rnl(0). We then get (exercise)

〈n, l,m|B|1, 0, 0〉 ≈ Ze2

10
r2
0Rn0(0)R10(0)δl0δm0,

which can be used to compute the approximate ground state wave function as a superposi-
tion of unperturbed l = 0 = m hydrogenic stationary states. Note that this superposition
will lead to a spherically symmetric ground state wave function which is non-vanishing for
r < r0. Thus there is a non-zero probability for finding the electron (or muon) within the
nucleus!
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