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Lecture 33

Relevant sections in text: §5.1

Approximation methods

We now begin studying various approximation methods in quantum mechanics. Ap-
proximation methods have a practical and a conceptual value. On the practical side,
because all but the simplest systems resist attempts to find closed form analytical solu-
tions to eigenvalue problems, the Schrodinger equation, etc. , we use such methods to get
useful, approximations to wave functions, energies, spectra, as well as transition probabil-
ities and other dynamical quantities. On the conceptual side we shall see that some of our
most cherished ways of thinking about energy levels and dynamics stem principally from
the point of view of approximation methods.

The need for approximation methods arises from the simple fact that almost all realistic
physical systems one wants to study are too complicated for explicit analytic solutions to
be available. (This is no less true in classical mechanics.) So, for example, while we can
analytically handle the hydrogen atom (when modeled as a charged particle in a Coulomb
field), we cannot handle helium or more complicated atoms in the same fashion — let alone
dynamical processes involving the interaction of these atoms with electromagnetic fields.
In fact, even more realistic models of the hydrogen atom (including things like spin-orbit
coupling, hyperfine interaction, finite size of nucleus, etc. ) are not exactly soluble. Thus
the only way we can understand these systems is to find methods of approximation.

We shall study two of several possible approximation techniques. First we shall look
at what is usually called “time independent perturbation theory” (TIPT), which gives ap-
proximate solutions to eigenvalue problems. But this is also called “stationary state pertur-
bation theory” (since one is usually studying the eigenvalue problem for the Hamiltonian).
Then we shall study time-dependent perturbation theory (TDPT), which is designed to
give approximate solutions to the (time-dependent) Schréodinger equation.

For the most part I am going to explain the results of the theory with very little in the
way of derivations. Then we will look at some important applications.

Time independent perturbation theory

This approximation method is designed to approximate the eigenvalues and eigen-
vectors of a given observable. This observable is usually the Hamiltonian (whence the
alternate name “stationary state perturbation theory”), but the techniques and results are
not restricted to just the Hamiltonian; any observable will do.

The basic idea is that one is attempting to view a given observable of interest as in
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some sense “close” to a simpler, well-understood observable. One then approximates the
eigenvalues and eigenvectors of the given observable in terms of those of the simpler ob-
servable. For example, one could be interested in the energies of an anharmonic oscillator,

with Hamiltonian )

P 1
H=—+ -mw?X? —|-6X4.
2m 2
Assuming that the anharmonicity (described by () is suitably “small”, one can usefully
approximate the eigenvalues and eigenvectors of H in terms of those of the harmonic

oscillator. Let us now make this more precise.

We suppose that the observable of interest H admits eigenvalues and can be expressed
as
H = H 0+ V,

where V is a small “perturbation” of Hy, e.g., its matrix elements in the basis of eigenvec-
tors of Hy are small compared to the eigenvalues of Hy. For simplicity, we assume that H
has discrete spectrum. We assume that all the operators in question are sufficiently well
behaved such that the eigenvectors and eigenvalues of H can be obtained via a 1-parameter
family of operators®™ beginning with Hy:

H(\) =Hy+\V, H(0)=Hy, H(l)=H.
For each value of A we have
HN)|EN)) = E(N)[EN)).

The idea is that if the effect of V is small compared to that of Hy then one should be able
to approximate the eigenvectors and eigenvalues of H by expanding them in a power series
in A\, keeping just the first term or so, and then evaluating at A = 1. This is equivalent
to approximating the eigenvectors and eigenvalues using an expansion in powers of the
matrix elements of the potential (which can be taken to be AV). Thus we assume that

Bo) = BV + 2B + 228P) 4.
‘En()‘» = |En>(0) + )\|En>(1) + )\2‘En>(2) 4.
The plan is to solve the equation

(Ho+ AV)(1Bn) ) + M En) V) + 22 ) @) - )
— BV 4+ AW + 22E2) £ ) (1B A END £ 22BN )

The parameter \ is not essential; it is just a convenient means of bookkeeping, as you will
see.
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order by order in A to derive the corresponding perturbative approximations to the eigen-
vectors and eigenvalues. Let us note that eigenvectors are only determined up to multipli-
cation by a scalar. This is, of course, what allows us to normalize them and view them as
state vectors. Therefore, when we solve the eigenvalue problem perturbatively we will still
need to normalize the result.

At zeroth order, it is easy to see by inspection that the relevant equation is
HOlEn>(O) = E7(10)’En>(0)7

which just says that the zeroth vector and scalar are the unperturbed eigenvector and
eigenvalue. This should come as no surprise. The higher order equations constitute a “tri-
angular” system of linear, inhomogeneous equations. Each set of equations depends only
upon the results of the lower order equations. So one can successively solve these equa-
tions from lower to higher order. In the end, any perturbative correction can be expressed
completely in terms of the unperturbed eigenvalues and eigenvectors. Of course, the idea
is that for a sufficiently small perturbation a good approximation can be obtained by just
sticking to relatively low orders. The details of the solution process (which constitutes a
very nice application of linear algebra techniques) can be found in your text. Here I will
just state the results for first-order perturbation theory (O(\) corrections) and show you
how to use them.

As it turns out, the solutions of the first-order equations are simplest when the un-
perturbed (A = 0) eigenvalue is non-degenerate. We begin with that case. If Eq(lo) is a
non-degenerate eigenvalue of Hy, then we have

EY =V, = O(E, [VIE) O,

and

iz E - E,i‘”

where

Vi = O/ (B |V | Bn)©)
The first-order approximation to the energy eigenvalue is then
By~ EY) + Vi,

The un-normalized eigenvector is, to first-order,

st E E,g )
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Thus the correct eigenvector is a superposition of the old eigenvectors, which form a basis.

If we wish to approximate the state of the system using this vector, we must normalize
it. It is a straightforward exercise to see that, to first-order in perturbation theory,

|En>n0rmalized =V Zn|En>,

where

ktn (B - E;E;O))Q
0)

You can easily see that Z, can be interpreted as the probability for getting ET(L when
measuring Hy in the state where H is known to have the value E), with certainty. Put
differently, we can say that Z, is the probability for finding the state \En>(0) when the
system is in the state |Ey,). In general, assuming that at least one of the V},, # 0, we have
that Z,, < 1.



