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Lecture 28

Relevant sections in text: §3.7

Two spin 1/2 systems: observables

We have constructed the 4-d Hilbert space of states for a system consisting of two
spin 1/2 particles. We built the space from the basis of “product states” corresponding to
knowing the spin along z for each particle with certainty. General states were, however,
not necessarily products but rather superpositions of such. How are the observables to
be represented as Hermitian operators on this space? To begin, let us consider the spin
observables for each of the particles. Call them ~Si = (~S1, ~S2). We define them on product
states via

~S1(|α〉 ⊗ |β〉) = (~S|α〉)⊗ |β〉,

and
~S2(|α〉 ⊗ |β〉) = |α〉 ⊗ (~S|β〉).

Here the operators ~S are the usual spin 1/2 operators (acting on a two-dimensional Hilbert
space) that we have already discussed in some detail.

The action of ~S1 and ~S2 are defined on general vectors by expanding those vectors in
a product basis, such as we considered earlier, and then using linearity to evaluate the
operator term by term on each vector in the expansion. Sometimes one writes

~S1 = ~S ⊗ I, ~S2 = I ⊗ ~S

to summarize the above definition. The two spin operators ~S1 and ~S2 so-defined will com-
mute (exercise) and have the same eigenvalues as their 1-particle counterparts (exercise).
In detail, if |α〉 is an eigenvector of some component of the spin, then so is |α〉 ⊗ |β〉 for
any |β〉. This means that if we know the spin component with certainty for particle one
then we get an eigenvector of the corresponding component of ~S1, as we should. The same
remarks apply to particle 2. Thus, as usual, when we expand a general vector in a product
basis,

|ψ〉 = a++|Sz,+〉⊗|Sz,+〉+a+−|Sz,+〉⊗|Sz,−〉+a−+|Sz,−〉⊗|Sz,+〉+a−−|Sz,−〉⊗|Sz,−〉.

we have that |a++|2 is the probability for finding particle 1 and particle two to have spin
up along z. Likewise we have |a+−|2 giving the probability for finding particle 1 to have
spin up along z and for particle 2 to have spin down along z. In this way we recover the
usual properties of each particle, now viewed as subsystems.

Let us explore a simple example of some of this. Consider the state vector

|ψ〉 =
1√
2
|Sz,+〉 ⊗ |Sz,+〉 −

1√
2
|Sz,+〉 ⊗ |Sz,−〉.
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Let us work out some probabilities. To begin with the probability for finding spin up or
down along z for particle one is 1 or 0 respectively. The probability for getting spin up or
down along z for particle 2 is 1/2 for either possibility. You can read these probabilities off
of the formula for |ψ〉, or you can simply take the scalar product of |ψ〉 with the relevant
eigenvectors (taking due account of degeneracy!!) as usual. Let us try something a little
harder. What is the probability that particle one has spin up along z and particle 2 has
spin down along x? There are a couple of ways to think about computing the answer
to this question: (1) you can expand |ψ〉 in the product basis of Sz and Sx eigenvectors
for particles one and two respectively, (2) you can take the scalar product of |ψ〉 with
the appropriate eigenvectors. Let’s use the second method. You can easily check that
|Sz,+〉⊗|Sx,−〉 is the normalized eigenvector of S1z and S2x with the desired eigenvalues.
Thus the probability is

|〈Sz,+|⊗Sx,−|ψ〉|2 = | 1√
2
〈Sz,+|Sz,+〉〈Sx,+|Sz,−〉−

1√
2
〈Sz,+|Sz,+〉〈Sx,−|Sz,−〉|2 = 1.

So, |ψ〉 represents a state where S1z and S2x are known with certainty! As you know,
this means that this vector must be a simultaneous eigenvector of these two (commuting)
operators. This is indeed the case. You can easily check that in this example |ψ〉 happens
to be the product vector:

|ψ〉 = |Sz,+〉 ⊗ |Sx,−〉.

Total angular momentum

We have shown how to define observables which refer to the individual subsystems
(spins in our example). There are other observables that are only defined for the composite
system. Consider the total angular momentum ~S, defined by

~S = ~S1 + ~S2.

You can easily check that this operator is Hermitian and that

[Sk,Sl] = ih̄εklmSm,

so it does represent angular momentum. Indeed, this operator generates rotations of the
two particle system as a whole. The individual spin operators ~S1 and ~S2 only generate
rotations of their respective subsystems.

Using our general theory of angular momentum we know that we can find a basis of
common eigenvectors of S2 and any one component, say, Sz. Let us write these as |s,ms〉,
where

S2|s,ms〉 = s(s+ 1)h̄2|s,ms〉, Sz|s,ms〉 = msh̄|s,ms〉.
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Of course, a priori we know that s and ms can be integers or half-integers. We shall see
that only certain integer values actually occur. Let us define the basis

|±,±〉 = |Sz,±〉 ⊗ |Sz,±〉.

This product basis physically corresponds to states in which the z component of spin
for each particle is known with certainty. In the following we will find the total angular
momentum eigenvalues and express the eigenvectors in terms of the product basis |±,±〉.

To begin with, it is clear that the product basis above is in fact the basis of eigenvectors
of Sz. To see this, we set m1 = ±1

2 , m2 = ±1
2 , so that the product basis vectors |±,±〉

can be denoted by |m1,m2〉, and we compute

Sz|m1,m2〉 = (S1z + S2z)|m1,m2〉 = (m1 +m2)h̄|m1,m2〉.

Evidently, ms = −1, 0, 1 with m = 0 being doubly degenerate (exercise). From our general
results on angular momentum it is clear that the only possible values for the total spin
quantum number are therefore s = 0, 1. From this we can infer that the ms = ±1
eigenvectors must be S2 eigenvectors with s = 1, but we may need linear combinations of
the ms = 0 product eigenvectors to get S2 eigenvectors. To see why the vectors |+ +〉 and
| −−〉 must be also S2 eigenvectors one reasons as follows. Our general theory guarantees
us the existence of a basis of simultaneous S2 and Sz eigenvectors. It is easy to see that
the | + +〉 and | − −〉 are the only eigenvectors (up to normalization) with ms = ±1,
since any other vectors can be expanded in the product basis and this immediately rules
out any other linear combinations (exercise). Therefore, these two vectors must be the S2

eigenvectors. Because they have ms = ±1 and we know that s = 0, 1 it follows that the
|+ +〉 and | − −〉 vectors are S2 eigenvectors with s = 1.

To be continued. . .
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