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Lecture 27
Relevant sections in text: §53.6, 3.7

Orbital angular momentum eigenvalues and eigenfunctions; spherical harmon-
ics

We are solving the equations

Lblr,0,6) = 5 5 L 0(r6,0) = mb(r.6,9)
L(r,0,¢) = =N (SH;;Q@; + Sljlgag(SinG@@)) W(r,0,6) = 1(L + 1)h%(r, 0, ).

We have already seen the solution to the L. equation takes the form

@D(n 07 d)) = fl,ml (Ta H)Giml(b:

where m;—and hence [— must be an integer.

Having solved the L, equation we now must solve the L? equation, which is an ordinary
differential equation for fi,, (r,0):
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The solutions of this equation are the associated Legendre polynomials P, (cos ) and

the angular momentum eigenfunctions are thus of the form

wl,ml (r,0,9) = fl,ml (T)Yl,ml (0,9),

where the Y] ,,, (0, ¢) are the spherical harmonics,

Yim (0, 8) = Ny, Pl (cos )™

Here N, is a normalization constant (see below) and the functions flml(r) are the “in-

tegration constants” for the solution to the purely angular differential equations. See your
text for detailed formulas for the spherical harmonics. Note that all non-negative integer
values are allowed for [. As discussed earlier, the functions fl,ml (r) are not determined by
the angular momentum eigenvalue problem. Typically these functions are fixed by requir-
ing the wave function to be also an eigenfunction of another observable which commutes
with L2 and L., e.g., the energy in a central force problem. In any case, we will assume

that
X, 9
A dr v fy (P2 = 1.
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This way, with the conventional normalization of the spherical harmonics:

T 21
/0 dé /0 dg sin” 0%, 00, 6) Y1, (0, 8) = GGy

we have that
! ! > 2 i 2m 2
{0 my |L,my) = drr do do, sin 91#2'? m (7,0, Qb)wl,ml (r,0,¢) = 5ll’5mlm"
0 0 0 7 !

For a state of definite angular momentum |/, m;) we see that the angular dependence
of the probability distribution is completely determined by the spherical harmonics. The
radial dependence of the probability distribution is not determined by the value of angular
momentum unless other requirements are made upon the state.

Addition of angular momentum: Two spin 1/2 systems

We now will have a look at a rather important and intricate part of angular momentum
theory involving the combination of two (or more) angular momenta. We will first focus
on the problem of making a quantum model for a system consisting of two distinguishable
spin 1/2 particles (ignoring all but their spin degrees of freedom). The idea is simply
to combine two copies of our existing model of a spin 1/2 system. The technology we
shall need is the tensor product construction.® We shall introduce this construction in the
context of the problem of combining — or “adding” — two spin 1/2 angular momenta.

For a system of two spin 1/2 particles, e.g., an electron and a positron, we can imagine
measuring the component of spin for each particle along a given axis, say the z axis. (We
can use different axes for each particle if we like.) Obviously there are 4 possible outcomes
(exercise); we can denote the states in which these spin values are known with certainty
by

|SZ?+>®’SZJ+>? |527+>®|527_>7 |SZ,_>®’SZ7+>, |S2’7_>®|527_>

Here the first factor of the pair always refers to “particle 17 and the second factor refers
to “particle 2”. We view these vectors as an orthonormal basis for a new Hilbert space
of states describing the two particle system; this is the tensor product Hilbert space. We
thus consider the 4-d Hilbert space of formal linear combinations of these 4 basis vectors.
An arbitrary vector [¢) is given by

|¢> = a++|527 +>®|527 +>+a+—|SZ7 +>®|52’7 _>+a—+|527 _>®|527 +>+a’——|SZ7 _>®|527 _>'

Here the scalar multiplication is assigned to the pair as a whole, but by definition it can
be assigned to either of the factors in the pair as well. If you wish you can view the scalars

* The text misleadingly calls this construction the “direct product”.
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a++ as forming a column vector with 4 rows; the squares of these scalars give the various
probabilities for the outcome of the S, measurement for each particle. Other bases are
possible, corresponding to other experimental arrangements, e.g., Sy for particle 1 and .S
for particle 2.

In the above discussion we introduced a special class of states: the product states,
which can be expressed as a pair 1)) ® |¢). Each element of the basis shown above is a
product state; a general state vector can be expressed as a superposition of product states.
We define

(le) +18) @ |7) = [a) @ [7) +18) @ [7),
and

) @ () +18)) = [7) @ |e) + |v) @ 6)-

The dual space to the tensor product space can be defined as follows. The action of a
product bra (o] ® (5] on a product ket |y) ® |0) is given by

({al @ (BD(17) ®6)) := (al7)(51d),

and the action of a general bra on a general ket is defined by expanding each in terms of the
product basis, expanding out the result using linearity, and then using the above definition
term by term. The rules for scalar multiplication, addition, etc. for bras is identical to
that for kets.

The scalar product on the Hilbert space is such that

(Jloy @ [8)T = (a] ® (8]

This implies that the basis shown above is orthonormal (nice exercise!).

In general we can play a similar game with any 2 vector spaces, say, V' of dimension
m and a vector space W of dimension n, to get tensor product space, denoted by V ® W,
with dimension mn.



