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Lecture 25

Relevant sections in text: §3.5, 3.6

Spin systems in general

Let us note that the spin 1/2 observables, being angular momentum operators, must
have eigenvectors/eigenvalues obeying the general results we have just derived. Indeed,
you can easily see that with j = 1/2 we reproduce the standard results on the spectrum
of the spin operators. For example we have

J2 ↔ S2 =
3
4
h̄2I,

which has eigenvalues
1
2

(
1
2

+ 1)h̄2 =
3
4
h̄2.

Given that j = 1
2 we have

mj = −1
2
,
1
2
,

so that the eigenvalues for Jz ↔ Sz are ± h̄2 , as they should be.

The “1/2” in “spin 1/2” comes from the fact that j = 1/2 for all the states of this
system. We can generalize this to other values of j. We speak of a particle or system
having spin s if it admits angular momentum operators which act on a Hilbert space of
states all of which have the same eigenvalue for J2, that is, all of which have the same
value j = s. For a system with spin-s and no other degrees of freedom the Hilbert space
of states has dimension 2s+ 1 and the operator representing the squared-magnitude of the
spin is given by (exercise)

J2 = s(s+ 1)h̄2I.

Usually in this situation we use the notation ~S for ~J .

Orbital angular momentum

In nature it appears that angular momentum comes in two types when we use a “par-
ticle” description of matter. First there is the intrinsic “spin” angular momentum carried
by an elementary particle. The spin (j) of a particle is fixed once and for all—although the
spin state (mj) is not—and is part of the essential attribute that makes a particle what it
is.* Second, there is the “orbital” angular momentum which arises due to the motion of
the particle in space. Both of these types of angular momentum are to some extent unified

* What I mean by this is, e.g., an electron is characterized by its mass, its electric charge,
its spin (j = 1/2) – and a few other things besides.
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when using the presumably more fundamental description of matter and its interactions
afforded by quantum field theory. Of course, we will be sticking to the notion of particle
which arises in the framework of (non-relativistic) quantum mechanics.

The orbital angular momentum of a particle is represented by the operator

~L = ~X × ~P ,

where ~X is the position operator relative to some fixed origin. Let us note that the ordering
of the operators ~X and ~P is unambiguous since the cross product only brings commuting
operators into play. For example,

Lz = XPy − Y Px.

The formula above for ~L is familiar from classical mechanics, but it can be justified
using the angular momentum commutation relations. For example, you can check by a
straightforward computation that

[Lx, Ly] = [Y Pz − ZPy, ZPx −XPz] = ih̄(XPy − Y Px) = ih̄Lz.

The other angular momentum commutation relations follow in a similar fashion.

Orbital angular momentum and rotations

To further justify this form of the orbital angular momentum, we can study its role
as infinitesimal generator of rotations. Let us consider an infinitesimal rotation about the
z-axis. The putative generator is

Lz = XPy − Y Px.

We can study the action of Lz on states by computing its action on the positions basis,

|~x〉 = |x, y, z〉, ~X|~x〉 = ~x|~x〉.

An infinitesimal rotation by an angle ε is given by

D(ε) = I − i

h̄
εLz +O(ε2),

so that, to first order in ε,

D(ε)|x, y, z〉 = [I − i

h̄
ε(xPy − yPx)]|x, y, z〉+O(ε2)

= |x− εy, y + εx, z〉+O(ε2).
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Here we used the fact that momentum generates translations. Now recall the following
geometric fact: under an infinitesimal rotation about an axis n̂ by an angle ε the position
vector (indeed, any vector) transforms as

~x→ ~x+ εn̂× ~x+O(ε2).

Choosing n̂ along the z axis, we can compare this formula with the change of the posi-
tion eigenvector under the infinitesimal transformation generated by Lz. We see that the
position eigenvector’s eigenvalue rotates properly (at least infinitesimally).

It is not hard to see that under a finite (i.e., non-infinitesimal) rotation about the
z-axis we have

e−
i
h̄θLz |x, y, z〉 = |x cos θ − y sin θ, y cos θ + x sin θ, z〉

= |R(k̂, θ〉 · ~x〉.

You can prove this by iterating the infinitesimal transformation, for example. Since the z
axis is arbitrary, we have in fact proved (exercise)

e−
i
h̄θn̂·~L|~x〉 = |R(n̂, θ〉 · ~x〉.

This implies that (exercise)

e
i
h̄θn̂·~L ~Xe−

i
h̄θn̂·~L = R(n̂, θ) · ~X,

which can be checked by evaluating it on the position basis. Therefore we have that
(exercise)

X(e−
i
h̄θn̂·~L|~x〉) = R(n̂, θ) · ~x(e−

i
h̄θn̂·~L|~x〉),

so that the rotation operator on the Hilbert space maps eigenvectors of position to eigen-
vectors with the rotated position:

e−
i
h̄θn̂·~L|~x〉 = |R(n̂, θ) · ~x〉.

From this result we have the position wave functions rotating properly (exercise):

e−
i
h̄θn̂·~Lψ(~x) = 〈~x|e−

i
h̄θn̂·~L|ψ〉 = ψ(R−1(n̂, θ) · ~x).

An identical set of results can be obtained for the momentum operators and their
eigenvectors and momentum wave functions. This is a satisfactory set of results since the
momentum vector should behave in the same way as the position vector under rotations.
We have, in particular

D(n̂, θ)|~p〉 = e−
i
h̄θn̂·~L|~p〉 = |R(n̂, θ) · ~p〉,

e
i
h̄θn̂·~L ~Pe−

i
h̄θn̂·~L = R(n̂, θ) · ~P .
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