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Lecture 10

Relevant sections in text: §1.7

Relation between position and momentum wave functions

A very useful and important relationship exists between the position and momentum
(generalized) eigenvectors. To get at it, we study the scalar product (z|p), which can be
viewed as the position wave function representing a momentum eigenvector. (Similarly,
(plx) = (x|p)* can also be viewed as the the momentum wave function representing a
position eigenvector.) This complex function of x must satisfy (for each p)

(x — €lp) = (2|Telp) = e nP(z|p).
This implies (to first order in €) (exercise)

< alp) = +plalp).

The solution to this equation is
(x|p) = (const.)e%px.

The constant can be determined by the normalization condition:

oo

5(p,p") = (plp) = / da(p|z) (z|p’).

—00

Using the Fourier representation of the delta function,

00 : ’
(p,p') = i/ da " W'P),

21 J_ o

we see that (exercise)
1

_ +px
(zlp) = \/ﬁ@np :

Thus we have recovered a familiar result from wave mechanics: the position space wave
function for a particle in a (idealized) state such that the momentum has the value p is
a (complex) plane wave* with wavelength 27;75. Because the absolute value of the wave
function is unity, the particle has an equal probability of being found anywhere (think:
uncertainty relation). Note also that since the energy of a free particle of mass m is

P2
=

* Of course, plane waves are not normalizable, but we have already discussed this subtlety.
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this wave function describes a free particle with energy p? /2m.

Because
1 i

e nPT
27h
we see that the momentum space probability amplitude for a particle in an idealized state

(plz) =

Y

corrsponding to the particle having a definite spatial location is also a plane wave. We see
that for an arbitrarily well-localized particle, all momenta are equally likely (uncertainty
relation again).

With these results in hand we can give an explicit relation between the position and
momentum bases:

) Z/O:o dplp) (plx) = \/;ﬂ—h/_o:odpe%pxlp),

p) = / dala)(al) = = / daeti?a).

and

If we set
() = (zlp), P(p) = (pl),

we get (exercise)
1

0 i -
/ dp (),
— 00

and
~ 1

W) = = / dre ()

Thus we recover the standard result that the position wave functions and momentum wave

functions are related by Fourier transforms. Note also that (exercise)

(1) = / " e (@)d(x) = / " i 0)d).

— 00 —00
When representing states by position (momentum) wave functions we say we are using
the position (momentum) representation for the quantum system. In the momentum
representation the momentum operator is a “multiplication operator”:

Pi(p) = (p|P|) = p(p|y) = pd(p),

while the position operator is a “differentiation operator”:

Xt =X { o= [ et}
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Expectation values

Expectation values in the position and momentum representation are easy to compute.
Using the notation

o(x) = (zlv),  (p) = (),

we have, in particular, the following

WO = [ def@ii@ = [ and ) f(-7 5)9)
and o ~ b
WP = [ af @I = [ dev @G i),

You should prove these as a very good exercise.

Particle in 3 dimensions

The generalization to a particle in 3 dimensions is done by, essentially, tripling our
previous constructions. Here we briefly describe this generalization.

Our strategy is to take account of the fact that we can measure positions in 3-d, and
we can measure momenta in 3-d. Thus we now have position vectors X corresponding
to 3 compatible observables: X' = (X,Y,Z), and momentum vectors P corresponding to
3 compatible observables: P; = (P, Py, P;). Each pair (X i P;) is represented by self-
adjoint operators exactly as before. The operator P; is to generate translations in the
corresponding position variable X?. We therefore demand that they have the following
canonical commutation relations:

(X', X7 =[P, Pj| =0, [X',Pj]=ihd}I.

We have position (generalized) eigenvectors |x) and momentum (generalized) eigen-
vectors |p),

X'|x) = 2'|x), Pj|p) = p;|p).

These form a (generalized) basis:

/d% x)(x| = I = /dgp Ip)(pl.

Here it is understood that the integrals run over all of position/momentum space.

The self-adjoint momentum operators generate unitary transformations corresponding
to 3-d translations:
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The canonical commutation relations reflect the fact that translations are commutative
operations: _
TaTy = Ty Ta = ¢ #@PIP — 7

Note that the commutation relations allow us to choose a basis of simultaneous (gen-
eralized) eigenvectors of the position or momentum. The relation between the two bases
is

1 i

(x|p) = Weh

The position wave functions and momentum wave functions are defined as usual by
taking the components of a state vector along the corresponding basis:

Y(x) = (x¢),  P(p) = (plY).

We then have

XU(x) = e(x), Ple) = & (),
and
XU(p) = —22 (e, Pie) = i)

The probability distributions for finding position/momentum in a volume V'/ V are

Prob(XEV):/‘/d3x|1/z(x)|2, Pmb(PeV):/Vd%m(p)F.



