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Lecture 10

Relevant sections in text: §1.7

Relation between position and momentum wave functions

A very useful and important relationship exists between the position and momentum
(generalized) eigenvectors. To get at it, we study the scalar product 〈x|p〉, which can be
viewed as the position wave function representing a momentum eigenvector. (Similarly,
〈p|x〉 = 〈x|p〉∗ can also be viewed as the the momentum wave function representing a
position eigenvector.) This complex function of x must satisfy (for each p)

〈x− ε|p〉 = 〈x|Tε|p〉 = e−
i
h̄εp〈x|p〉.

This implies (to first order in ε) (exercise)

d

dx
〈x|p〉 =

i

h̄
p〈x|p〉.

The solution to this equation is

〈x|p〉 = (const.)e
i
h̄px.

The constant can be determined by the normalization condition:

δ(p, p′) = 〈p|p′〉 =
∫ ∞
−∞

dx〈p|x〉〈x|p′〉.

Using the Fourier representation of the delta function,

δ(p, p′) =
1

2π

∫ ∞
−∞

dx eix(p′−p),

we see that (exercise)

〈x|p〉 =
1√
2πh̄

e
i
h̄px.

Thus we have recovered a familiar result from wave mechanics: the position space wave
function for a particle in a (idealized) state such that the momentum has the value p is
a (complex) plane wave* with wavelength 2πh̄

p . Because the absolute value of the wave
function is unity, the particle has an equal probability of being found anywhere (think:
uncertainty relation). Note also that since the energy of a free particle of mass m is

H =
P 2

2m
,

* Of course, plane waves are not normalizable, but we have already discussed this subtlety.
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this wave function describes a free particle with energy p2/2m.

Because
〈p|x〉 =

1√
2πh̄

e−
i
h̄px,

we see that the momentum space probability amplitude for a particle in an idealized state
corrsponding to the particle having a definite spatial location is also a plane wave. We see
that for an arbitrarily well-localized particle, all momenta are equally likely (uncertainty
relation again).

With these results in hand we can give an explicit relation between the position and
momentum bases:

|x〉 =
∫ ∞
−∞

dp|p〉〈p|x〉 =
1√
2πh̄

∫ ∞
−∞

dp e−
i
h̄px|p〉,

and
|p〉 =

∫ ∞
−∞

dx|x〉〈x|p〉 =
1√
2πh̄

∫ ∞
−∞

dx e
i
h̄px|x〉.

If we set
ψ(x) = 〈x|ψ〉, ψ̃(p) = 〈p|ψ〉,

we get (exercise)

ψ(x) =
1√
2πh̄

∫ ∞
−∞

dp e
i
h̄pxψ̃(p),

and
ψ̃(p) =

1√
2πh̄

∫ ∞
−∞

dx e−
i
h̄pxψ(x).

Thus we recover the standard result that the position wave functions and momentum wave
functions are related by Fourier transforms. Note also that (exercise)

〈ψ|φ〉 =
∫ ∞
−∞

dxψ∗(x)φ(x) =
∫ ∞
−∞

dp ψ̃∗(p)φ̃(p).

When representing states by position (momentum) wave functions we say we are using
the position (momentum) representation for the quantum system. In the momentum
representation the momentum operator is a “multiplication operator”:

Pψ̃(p) = 〈p|P |ψ〉 = p〈p|ψ〉 = pψ̃(p),

while the position operator is a “differentiation operator”:

Xψ̃(p) = X

{
1√
2πh̄

∫ ∞
−∞

dx e−
i
h̄pxψ(x)

}
=

1√
2πh̄

∫ ∞
−∞

dx e−
i
h̄pxxψ(x)

= − h̄
i

∂

∂p

1√
2πh̄

∫ ∞
−∞

dx e−
i
h̄pxψ(x)

= − h̄
i

∂ψ̃(p)
∂p

.
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Expectation values

Expectation values in the position and momentum representation are easy to compute.
Using the notation

ψ(x) = 〈x|ψ〉, ψ̃(p) = 〈p|ψ〉,

we have, in particular, the following

〈ψ|f(X)|ψ〉 =
∫ ∞
−∞

dxf(x)|ψ(x)|2 =
∫ ∞
−∞

dp ψ̃∗(p)f(− h̄
i

d

dp
)ψ̃(p),

and
〈ψ|f(P )|ψ〉 =

∫ ∞
−∞

dpf(p)|ψ̃(p)|2 =
∫ ∞
−∞

dxψ∗(x)f(
h̄

i

d

dx
)ψ(x),

You should prove these as a very good exercise.

Particle in 3 dimensions

The generalization to a particle in 3 dimensions is done by, essentially, tripling our
previous constructions. Here we briefly describe this generalization.

Our strategy is to take account of the fact that we can measure positions in 3-d, and
we can measure momenta in 3-d. Thus we now have position vectors X corresponding
to 3 compatible observables: Xi = (X,Y, Z), and momentum vectors P corresponding to
3 compatible observables: Pi = (Px, Py, Pz). Each pair (Xi, Pi) is represented by self-
adjoint operators exactly as before. The operator Pi is to generate translations in the
corresponding position variable Xi. We therefore demand that they have the following
canonical commutation relations:

[Xi, Xj ] = [Pi, Pj ] = 0, [Xi, Pj ] = ih̄δijI.

We have position (generalized) eigenvectors |x〉 and momentum (generalized) eigen-
vectors |p〉,

Xi|x〉 = xi|x〉, Pi|p〉 = pi|p〉.

These form a (generalized) basis:∫
d3x |x〉〈x| = I =

∫
d3p |p〉〈p|.

Here it is understood that the integrals run over all of position/momentum space.

The self-adjoint momentum operators generate unitary transformations corresponding
to 3-d translations:

Ta = e−
i
h̄a·P, Ta|x〉 = |x + a〉.
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The canonical commutation relations reflect the fact that translations are commutative
operations:

TaTb = TbTa = e−
i
h̄ (a+b)·P = Ta+b.

Note that the commutation relations allow us to choose a basis of simultaneous (gen-
eralized) eigenvectors of the position or momentum. The relation between the two bases
is

〈x|p〉 =
1

(2πh̄)3/2
e

i
h̄p·x.

The position wave functions and momentum wave functions are defined as usual by
taking the components of a state vector along the corresponding basis:

ψ(x) = 〈x|ψ〉, ψ̃(p) = 〈p|ψ〉.

We then have
Xiψ(x) = xiψ(x), Piψ(x) =

h̄

i

∂

∂xi
ψ(x),

and
Xiψ̃(p) = − h̄

i

∂

∂pi
ψ̃(p), Piψ̃(p) = piψ̃(p),

The probability distributions for finding position/momentum in a volume V /Ṽ are

Prob(X ∈ V ) =
∫
V
d3x |ψ(x)|2, P rob(P ∈ Ṽ ) =

∫
Ṽ
d3p |ψ̃(p)|2.
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