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Lecture 6

Relevant sections in text: §1.4

An alternative to the expectation value postulate

Here is an equivalent statement of the expectation value postulate.*

Alternate Postulate

Let A be a Hermitian operator with an ON basis of eigenvectors |i〉:

A|i〉 = ai|i〉.

The only possible outcome of a measurement of the observable represented by A is one of
its eigenvalues aj . The probability for getting an eigenvalue a in a state |ψ〉 is

Prob(A = a) =
D∑
i=1
|〈i, a|ψ〉|2,

where the sum ranges over the D-dimensional space of eigenvectors |i, a〉,i = 1, . . . , D, with
the given eigenvalue a. Note that if the eigenvalue aj is non-degenerate then

Prob(A = aj) = |〈j|ψ〉|2.

Note also that 〈j|ψ〉 is the component of |ψ〉 along |j〉.

Let us prove the probability formula in the case where there is no degeneracy. (Allowing
for degeneracy is no problem; see if you can prove the result above in this case.) Let f(x)
be the characteristic function of the non-degenerate eigenvalue aj :

f(x) =
{

1 if x = aj
0 otherwise

.

We then have (exercise)
f(A) =

∑
k

f(ak)|k〉〈k| = |j〉〈j|.

Then, in the state |ψ〉 we have

Prob(A = aj) = 〈f(A)〉 = 〈ψ| (|j〉〈j|) |ψ〉 = |〈j|ψ〉|2.

* For now we state it in a form that is applicable to finite-dimensional Hilbert spaces. We
will show how to generalize it to infinite-dimensional ones (such as occur with a “particle”)
in a little while.

1



Physics 6210/Spring 2008/Lecture 6

Because the state vectors have unit norm, we have

1 = 〈ψ|ψ〉 =
∑
j

〈ψ|j〉〈j|ψ〉 =
∑
j

|〈j|ψ〉|2,

that is, the probabilities Prob(A = aj) add up to unity when summed over all the eigen-
values. This indicates that the probability vanishes for finding a value for A which is not
one of its eigenvalues.

We can write the expectation value of an observable so that the probabilities feature
explicitly. As usual, we have

A|i〉 = ai|i〉, 〈i|j〉 = δij .

If a system is in the state |ψ〉, we compute (by inserting the identity operator twice – good
exercise)

〈A〉 = 〈ψ|A|ψ〉
=

∑
ij

〈ψ|i〉〈i|A|j〉〈j|ψ〉

=
∑
i

ai|〈i|ψ〉|2.

We see that the expectation value is just the sum of all possible outcomes weighted by the
probability for each outcome — just as it should be!

Note the special role played by (normalized) eigenvectors: If the state is an eigenvector
of some observable A with eigenvalue a, then the probability for getting a is unity. Thus
“eigenstates” (states represented by eigenvectors) are states where you know one (or more)
observables with certainty.

Here’s a good exercise for you: Show that every state vector is an eigenvector of some
Hermitian operator. Therefore, at least in principle, every state can be determined by a
suitable measurement.

The expectation value postulate makes very specific predictions about what are the
possible outcomes of a measurement of a given observable. In essence, all the physical
output of quantum mechanics appears via this postulate. I have to emphasize that the
predictions are always of a probabilistic nature. (Of course, some probabilities are 1 or 0,
so this does not mean that one can never make any statements with certainty.)

Stern-Gerlach revisited

Let us now recover some of the salient features of the Stern-Gerlach experiment from
our quantum mechanical model of the spin 1/2 system . View our beam of spin 1/2 system
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as a large number of identical systems. When we pass the beam through an apparatus
SGz, and keep only the spin up beam, we have prepared a large collection of particles,
all in the state |Sz,+〉. If we pass the beam through another SGz apparatus, we find all
the particles are still spin up. In our model, this result is simply the statement that the
probability for finding Sz = h̄/2 in a the state |ψ〉 = |Sz,+〉 is unity:

|〈Sz,+|ψ〉|2 = 〈Sz,+|Sz,+〉|2 = 1.

Now consider passing the filtered beam (all particles in the state |ψ〉 = |Sz,+〉) through
an SGx apparatus. Experimentally we know that the beam splits in half. In our model
this is seen by computing the probability distribution for Sx when |ψ〉 = |Sz,+〉. We get

|〈Sx,±|ψ〉|2 = |〈Sx,±|Sz,+〉|2 =
1
2
.

Now we come to a crucial aspect of the use of our model to describe nature. Suppose we
take all the particles that had Sx = h̄/2 and pass them through an SGz apparatus, what
does our model predict? The key observation is that the beam of particles that are going
to be passed through SGz are now all in the state

|ψ〉 = |Sx,+〉 =
1√
2

(|Sz,+〉+ |Sz,−〉).

The measurement/preparation/filtering process using SGx has determined a new state
vector for the system! To verify this, we just pass the SGx-filtered beam through another
SGx apparatus and see that the particles have Sx = h̄/2 with probability unity. This
means that they are in the corresponding eigenstate, |Sx,+〉. So, when we pass this beam
through SGz we find the 50-50 probability distribution:

|〈±|ψ〉|2 = |〈±|Sx,+〉|2 =
1
2
.

We now want to spend a little time understanding this sort of result in general.

Compatible and Incompatible Observables

Let us generalize the unusual result found in the Stern-Gerlach experiment as follows.
Suppose we have two observables A and B. If we measure A we will get one of its eigen-
values, say, a. For simplicity (only) we assume that this eigenvalue is non-degenerate. The
state of the system is now the eigenvector |a〉, where

A|a〉 = a|a〉.

If we then measure the observable B we get an eigenvalue, say b, and the system is in the
state |b〉, where

B|b〉 = b|b〉
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(for simplicity, we also assume that b is a non-degenerate eigenvalue). If we measure A
again the probability for getting a is now

|〈a|ψ〉|2 = |〈a|b〉|2.

Unless there is a real number c such that |a〉 = eic|b〉 this probability is less than unity.*
When do we have |a〉 = eic|b〉? This condition means that A and B have a common
eigenvector. ( Note that there are no common eigenvectors for the spin operators – ex-
ercise.) As long as A and B do not have all of their eigenvectors in common, there will
be situations where knowing one of the observables with certainty will preclude knowing
the other with certainty. Such observables are called incompatible. Under what conditions
will two observables be compatible? Evidently, compatible observables are represented by
operators that have a common (basis) set of eigenvectors so that the argument just given
above cannot apply. This implies that the observables must commute,

[A,B] ≡ AB −BA = 0.

To see this, let us denote by |a, b〉 the common set of eigenvectors, which form an ON basis:

A|a, b〉 = a|a, b〉, B|a, b〉 = b|a, b〉, 〈a, b|a′, b′〉 = δaa′δbb′.

We have
AB|a, b〉 = bA|a, b〉 = ba|a, b〉 = aB|a, b〉 = BA|a, b〉.

Since the operator [A,B] maps each element of a basis to the zero vector, and since every
vector can be expanded in this basis, we conclude that [A,B] must be the zero operator.

So, if a pair of Hermitian operators have a common basis of eigenvectors then they
must commute. It is a fundamental result from linear algebra (for finite dimensional vec-
tor spaces) that the converse also holds. Thus we have the very important result: Two
Hermitian operators commute if and only if they admit a common, ON basis of eigenvec-
tors. A more physical statement is: Two observables are compatible if and only if their
corresponding operators commute.

So, compatible observables are represented by commuting operators. Physically, it
is possible to have (a basis of) states in which the values of compatible observables are
determined with certainty – unlike different components of the spin. By the same token,
incompatible observables are represented by operators that do not commute. For incom-
patible observables there will exist states in which their values cannot both be determined

* To see this, use the Schwarz inequality:

|〈a|b〉|2 ≤ 〈a|a〉〈b|b〉, equality iff |a〉 = (const.)|b〉.
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with statistical certainty. We see then that the unusual feature of nature embodied in the
Stern-Gerlach experiment is encoded in the algebraic structure associated to the observ-
ables by the commutator of the corresponding linear operators.

The spin observables Sj are incompatible because they satisfy (see your homework)

[Sj , Sk] = ih̄εjklSl.

In fact, because the sets of eigenvectors of the spin operators have no common elements
there are no states in which two spin observables are known with certainty. This is at the
heart of the strange behavior of the SG experiment. And this is why it is not generally
appropriate to think of the observed characteristics of a quantum system to somehow
“reside in” or “be a part of the reality of” that system. That’s just not how nature works.
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