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Lecture 5

Relevant sections in text: §1.4

Probability interpretation

We are now ready to use our definition of state vectors and operator-observables to
extract physical predictions. We use the postulate relating expectation values to diagonal
matrix elements. Let us start with the eigenvector |+〉 of Sz. In the state represented by
this vector we easily get

〈Sz〉 = 〈+|Sz|+〉 =
h̄

2
,

With just a little more work we get

〈Sx〉 = 〈Sy〉 = 0.

For example:

Sx =
h̄

2

(
(|+〉〈−|+ |−〉〈+|

)
,

so that
〈Sx〉 = 〈+|Sx|+〉 =

h̄

2
〈+|
(

(|+〉〈−|+ |−〉〈+|
)
|+〉 = 0.

These results match the results we found in the Stern-Gerlach experiment. Indeed,
|+〉 ≡ |Sz,+〉 is supposed to be a state where Sz is known with certainty (probability
unity) to have the value +h̄/2. Thus the expectation value of this observable in such a
state is also h̄/2. We also saw in the Stern-Gerlach experiment that this state has equal
probability of finding ±h̄/2 for Sx and Sy whence their expectation value vanishes, in
agreement with the output of the mathematical model. You can verify as an exercise that
similar comments (with appropriate permutation of x, y, and z) can be made for |Sz,−〉,
|Sx,±〉, etc.

The postulate of QM defining expectation values is the place where the mathematical
representation of a physical system makes contact with reality. It provides the predictions
that can be tested/compared with experiment. Note that this postulate gives the physical
output of QM in terms of probabilities (specifically, expectation values). In fact, as we
shall see, all the physical predictions of quantum mechanics are intrinsically probabilistic.

How can we see directly the probabilities for the various outcomes of a measurement
of something like spin when the expectation value postulate only gives statistical averages,
i.e., expectation values? We proceed as follows. Consider a function f(x) that takes the
value 1 at, say, x = h̄/2 and vanishes otherwise.* Consider the observable, say, f(Sx) –

* Such a function is called a characteristic function for the set x = h̄
2 .
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not yet viewed as an operator, but just as the experimentally accessible observable. So,
f(Sx) is a mathematical model for a detector for spin-up along the x-axis — it yields
the value one when the spin along x is h̄

2 and yields zero otherwise. If you think about
repeatedly setting up an experimental state and monitoring the state of the “detector”
f(Sx) you will see that (in the limit of an arbitrarily large number of experiments) the
average value of f(Sx) over many experimental runs – the expectation value of f(Sx) –
is precisely equal to the probability for finding Sx to have the value h̄/2 (exercise). More
generally, the probability of finding Sx to have a value in any range R of real numbers is
just the expectation value of the characteristic function of the set R. Clearly we can do
the same for any other component of the spin. Thus we can extract a probability for a
given outcome of a measurement of an observable by computing an expectation value of a
suitable (characteristic) function of the observable. Apparently to implement this idea we
need to figure out how to define functions of operators. Let’s see how to do this.

In general, given a Hermitian operator A with an ON basis of eigenvectors |i〉 and
eigenvalues ai, and a real-valued function h(x), we want to define a Hermitian operator
h(A). If you think a moment about simple functions like polynomials, you will see that
this definition should be such that the eigenvectors of h(A) will be the same as for A, and
the eigenvalues will be h(ai). Evidently we desire the spectral decomposition

h(A) =
∑
i

h(ai)|i〉〈i|.

You can easily check that with this definition |i〉 do indeed constitute (a basis of) eigen-
vectors of h(A) with eigenvalues h(ai). Thus we define functions of observables by their
spectral decomposition.

Returning to probabilities for spin measurements, given the characteristic function
f(x) for x = h̄/2, we define the operator f(Sx) by its spectral decomposition:

f(Sx) = f(
h̄

2
)|Sx,+〉〈Sx,+|+ f(− h̄

2
)|Sx,−〉〈Sx,−| = |Sx,+〉〈Sx,+|.

The desired operator is just the projection operator into the desired eigenspace.* It is now
easy to see, by computing expectation values of f(Sx) according to the expectation value
postulate, that the following probability distributions arise (good exercise!):

State: |Sz,±〉 −→ Prob(Sx = ±h̄/2) = 1/2, P rob(Sx = ∓h̄/2) = 1/2

State: |Sx,±〉 −→ Prob(Sx = ±h̄/2) = 1, P rob(Sx = ∓h̄/2) = 0

* You can easily see from the previous paragraph that this is a general result, not limited to
the spin 1/2 example.
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State: |Sy,±〉 −→ Prob(Sx = ±h̄/2) = 1/2, P rob(Sx = ∓h̄/2) = 1/2.

To check these formulas you need to use the easily verified results:

〈Sx,±|+〉 =
1√
2
〈Sx,±|−〉 = ± 1√

2
.

You can easily play similar games with other components of ~S. You can also compute
the probabilities (via expectation values) in any state you like just by expanding the state
in the |±〉 basis and computing the expectation values using the orthonormality of the
basis. In particular if a state (unit) vector takes the form

|ψ〉 = a|+〉+ b|−〉,

where the coefficients a and b are restricted by

1 = 〈ψ|ψ〉 = |a|2 + |b|2,

then the probability of getting h̄/2 for Sz is given by |a|2 while the probability for getting
−h̄/2 is given by |b|2. To see this we compute:

Prob(Sz = ± h̄
2

) = 〈ψ|±〉〈±|ψ〉 = |〈±|ψ〉|2.

Note that the normalization condition

1 = 〈ψ|ψ〉 = |a|2 + |b|2

guarantees that these probabilities add up to unity. This implies that the probability for
getting any other values for Sz must vanish. Let us prove this directly. Let g(x) be a
function that vanishes at ±h̄/2, that is, that vanishes at the eigenvalues of any of the spin
operators. For any component of the spin, Sk, and for any state |ψ〉 we have that

〈g(Sk)〉 = 〈ψ|
{
g(
h̄

2
)|Sk,+〉〈Sk,+|+ g(− h̄

2
)|Sk,−〉〈Sk,−|

}
|ψ〉 = 0.

In particular, if you pick g to be a characteristic function of any set not including the
spectrum of Sk, then the expectation value – which is the probability for finding Sk to be
in that set – vanishes. Thus we see that the only possible outcome of a measurement of an
observable is an element of its spectrum, i.e., one of its eigenvalues.

Here is a handy observation. Suppose we have a normalized state |ψ〉 and we want to
know the probability of finding, say, Sx = h̄

2 . How do we compute it? In principle we can
expand the state in terms of the basis |Sx,±〉:

|ψ〉 = c|Sx,+〉+ d|Sx,−〉, |c|2 + |d|2 = 1.
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The probability is then given by |c|2, using the exact same logic as before. But here’s
a shortcut: Given a state vector |ψ〉, and given any (normalized) eigenvector |λ〉 of some
observable corresponding to a non-degenerate eigenvalue λ, the component of |ψ〉 along |λ〉
is just 〈λ|ψ〉, whence the probability for getting λ is just |〈λ|Ψ〉|2. So, in our spin example,
given the state vector |ψ〉, the probability for getting ±h̄/2 upon measurement of n̂ · ~S is
|〈n̂ · ~S,±|ψ〉|2.

The foregoing results are Very Important and are easily generalized to other quantum
systems; they are at the heart of the physical output of quantum mechanics. Let us
summarize what we found.

(i) The only possible outcome of a measurement of a spin component is one of the eigen-
values of the corresponding operator (±h̄/2).

(ii) Given a state represented by the (unit) vector |ψ〉 and given an observable (represented
by) n̂ · ~S, the probability for getting the value ±h̄/2 upon measurement of (the observ-
able represented by) n̂ · ~S is |〈n̂ · ~S,±|ψ〉|2. Note that the normalization of the state
vector guarantees that the probabilities for all possible outcomes of a measurement
add up to unity.
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