
Small oscillations. Forced Oscillations.

Physics 6010, Fall 2016

Small Oscillations. Normal Modes.

Relevant Sections in Text: §6.1–6.3, 6.4

Small Oscillations: One degree of freedom.

We now leave the 2-body problem and consider another important class of systems

which can be given a complete analytic treatment. I assume you already know that the

motion of a system in the vicinity of a point of stable equilibrium is approximated by the

superposition of harmonic oscillations. This approximation is very valuable and we shall

spend some time studying it.

Let us begin by considering the motion of a one-dimensional system near a critical

point of the potential energy. While only the simplest systems can be reduced to one

degree of freedom, this case is still particularly important because – as we shall soon see –

multi-dimensional systems (in the vicinity of stable equilibrium) can be reduced to multiple

copies of the one dimensional case.

We assume the Lagrangian is of the form:

L =
1

2
a(q)q̇2 − V (q).

Note in particular that we assume for now that the system is autonomous, i.e., energy

is conserved. Let q0 be a critical point of the potential, so that V ′(q0) = 0. Let us

approximate the motion by assuming that x := q−q0 is “small”. We expand the Lagrangian

in a Taylor series in x, keeping only the first non-trivial terms (exercise):

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2 + . . . .

Here we have set m = a(q0) and k = V ′′(q0). Of course, the kinetic energy must be

positive, so that m > 0. Note that we also have dropped the irrelevant constant V (q0). If

desired we can adjust the zero point of potential energy so that this constant is zero.

The EL equations are (in the domain of validity of the approximation)

mẍ = −kx.

This equation is easily integrated:

x = Re(Aeiωt), when k 6= 0.

x = at+ b, if k = 0,
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where ω = ±
√

k
m and A is a complex constant encoding the two real integration constants,

which can be fixed by initial conditions. If k > 0, then q0 is a point of stable equilibrium,

and we get harmonic motion. In particular, if x is small initially and the initial velocity is

sufficiently small, then x(t) remains small for all time (exercise), so that our approximation

is self-consistent. On the other hand, if k ≤ 0, then the motion of the particle need not

maintain our approximation of small x; our approximation is not self-consistent and must

be abandoned after a very short time. Of course, the case k < 0 corresponds to unstable

equilibrium, for which a small perturbation leads to a rapid motion away from equilibrium.

If k = 0, then the critical point q0 is neither a maximum or a minimum but is a saddle

point (“neutral equilibrium”); our approximation again becomes invalid, although the time

scale for this is larger than the case of unstable equilibrium.

Thus, in a neighborhood of a point of stable equilibrium, it is consistent to make the

harmonic approximation to the potential and kinetic energies. In the harmonic approxi-

mation the motion of the system is mathematically the same as that of a simple harmonic

oscillator.

A very familiar example of all of this is the planar pendulum of mass m and length l

for which q = θ is the deflection from a vertically downward position. We have

V (θ) = mgl(1− cos θ),

and

a(θ) =
1

2
ml2.

The Lagrangian in the harmonic approximation near equilibrium at θ = 0 is (exercise)

L =
1

2
ml2θ̇2 − mgl

2
θ2,

so that the harmonic motion has “mass” ml2 and angular frequency” ω =
√

g
l . (Exercise:

what happens to motion near θ = π?)

Example

Consider a mass m which is constrained to move on a straight line. The mass is bound

to a fixed point by harmonic force with potential energy V = 1
2K(r − R)2, where K is a

constant, r is the distance of the particle to the fixed point. The distance from the point to

the line is l > R. A mechanical model of this system is a mass sliding on a straight track;

the mass being connected to a fixed point by a spring of equilibrium (“unstretched”) length

R. Our goal in this example is to find the stable equilibrium position(s) and compute the

frequency of small oscillations about the equilibrium.
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Evidently, r2 = x2 + l2, where x is the position of the particle along the given line,

with x = 0 the location at distance l from the center of force. Using x as the generalized

coordinate, the Lagrangian for this system is (exercise)

L =
1

2
mẋ2 − 1

2
K(
√
x2 + l2 −R)2.

You can check that x = 0 is the only point of stable equilibrium. (As an exercise you can

check that the point x = 0 is a point of unstable equilibrium if we assume R ≥ l.) You

can expand the potential to second order to find that (exercise)

k =
K(l −R)

l
,

so that

ω =

√
K(l −R)

lm
.

Note that K(l − R) is the force needed to move a particle from r = R to the point r = l

(exercise) in the presence of the potential V .

Example

We return to our example (from somewhat earlier in the course) of a plane pendulum

of length l with horizontally moving point of support. The mass m1 (the point of support)

has position x, and the angular deflection of the pendulum (mass m2) is denoted by φ.

The kinetic energy is

T =
1

2
(m1 +m2)ẋ2 +

1

2
m2(l2φ̇2 + 2lẋφ̇ cosφ),

and the potential energy is

V = −m2gl cosφ.

We have already seen that we can use conservation of the momentum conjugate to x

to effect a Lagrangian reduction which eliminates the x degree of freedom. In detail, the

conservation law we need is

P = (m1 +m2)ẋ+m2lφ̇ cosφ = constant.

This conservation law is just the conservation of the x component of the center of mass of

the system (exercise).

Let us compute the frequency of small oscillations of the pendulum in the reference

frame in which P = 0, so that (exercise)

(m1 +m2)x+m2l sinφ = constant.
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In this reference frame, which is the rest frame of the x component of the center of mass,

the reduced kinetic energy is (exercise)

T =
1

2
m2l

2φ̇2
(

1− m2

m1 +m2
cos2 φ

)
,

and the reduced potential energy is (exercise)

V = −m2gl cosφ.

Clearly φ = 0 is an equilibrium point (exercise). Expanding in powers of φ we get, in the

harmonic approximation,

T ≈ 1

2

m1m2l
2

m1 +m2
φ̇2,

V ≈ 1

2
m2glφ

2.

It is now straightforward to see that the frequency of small oscillations is (exercise)

ω =

√
g(m1 +m2)

m1l
.

Of course, in a generic inertial reference frame the motion of the system in the harmonic

approximation is small oscillations at the above frequency superimposed with a uniform

translation of the center of mass along the x direction.

As a sanity check, let us consider the limit in which m2
m1

<< 1, i.e., the mass at the

point of support is becoming large. Physically, we expect that the point of support moves

with a uniform translation along x. In the rest frame of the point of support (which is now

the approximate center of mass) we have a traditional plane pendulum problem. In this

limit we get (exercise)

ω ≈
√
g

l
,

as expected.

Forced Oscillations

A typical scenario in which small oscillations is relevant is where one has a system

in stable equilibrium which is subjected to an external force ~F which moves the system

from equilibrium. We allow this force to be time dependent. This introduces an additional

potential energy term V1 to the quadratically approximated Lagrangian given by

V1 = −~F (t) · ~x.
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Let us explore this scenario in its simplest setting: a single degree of freedom. Later we

will show how these results are used when there is more than one degree of freedom.

We thus consider the Lagrangian

L =
1

2
mẋ2 − 1

2
kx2 + xF (t),

where k > 0. The equations of motion are that of a harmonic oscillator subjected to an

external, time varying force F (t) (exercise):

ẍ+ ω2x =
F (t)

m
.

Of course, we must assume that F remains suitably small so that the solutions do not

violate the approximation needed for their validity.

This inhomogeneous differential equation can be directly integrated as follows. Define

ξ(t) = ẋ(t) + iωx(t).

In terms of this complex variable the equation of motion takes the form (exercise)

ξ̇ − iωξ =
F (t)

m
.

You can easily see that, when F = 0, the solution is of the form Aeiωt, where A is a

constant. So try a solution of the form

ξ(t) = A(t)eiωt.

Plugging into the ODE, we find that A satisfies

Ȧ = e−iωt
F (t)

m
,

which has solution (exercise)

A(t) =

∫
dt

1

m
F (t)e−iωt + constant.

Putting this all together, we see that the general solution of the forced oscillator equation

is (exercise)

x(t) =
1

ω
Im(ξ(t))

=
1

ω
Im

[
eiωt(B +

∫
1

m
F (t)e−iωt dt)

]
,

where B is an arbitrary complex constant.
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As an example, suppose that

F (t) = f cos(γt).

Then, provided γ2 6= ω2, the general solution is of the form (exercise)

x(t) = a cos(ωt+ α) +
f

m(ω2 − γ2)
cos(γt),

where a and α are real constants. We see that in this case the motion is a superposition

of two oscillations at the two frequencies ω and γ inherent in the problem. The relative

importance of the forced oscillation component depends, of course, on the the size of f ,

but also on the relative magnitudes of ω and γ.

When ω → γ the forced oscillation amplitude diverges and our form of the solution

given above becomes invalid; this situation is called resonance. To get the correct solution

in this case we set γ = ω in our integral expression or the general solution. We then get a

solution of the form (exercise)

x(t) = a cos(ωt+ α) +
f

2mω
t sinωt,

where, again, a and α are constants. Note the linear growth in t, which eventually destroys

the harmonic approximation.

We can get a useful picture of the behavior of the system near resonance by an ap-

proximation scheme. Let

γ = ω + ε,

where ε << ω. Write the general solution for x(t) (off resonance) in the complex form

(exercise):

ξ(t) ≈ (A+Beiεt)eiωt.

Over one period, 2π
ω , the amplitude C = |A+Beiεt| changes very little. Thus the motion

is approximately that of free oscillation with a slowly varying amplitude. In particular,

the amplitude is of the form (exercise)

C =
√
a2 + b2 + 2ab cos(εt+ φ),

where A = aeiα, B = beiβ , and φ = β − α. Thus the amplitude varies (slowly) between

the values |a+ b| and |a− b|. The oscillatory behavior is said to exhibit “beats”.

Typically, a general force F (t) can be Fourier analyzed into sinusoidal components.

Likewise, we can Fourier analyze the solution x(t). We can view the above example as

illustrating the behavior of a typical Fourier component. The general motion of the system

is then a superposition of motions such as given above (exercise).
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Finally, let us note that since the Lagrangian for a system executing forced oscillations

is explicitly time dependent (provided dF
dt 6= 0), there will be no conservation of energy

for the oscillator. This should not surprise you, since the oscillator is clearly exchanging

energy with its environment. We can compute the energy transferred during a time interval

(t1, t2) by noting that the oscillator energy can be written as

E =
1

2
m(ẋ2 + ω2x2) =

1

2
m|ξ|2,

and then using our explicit formula for ξ(t),

ξ = eiωt(B +

∫ t

0

1

m
F (t)e−iωt dt)

to compute the energy at time t. For example, let us suppose that the system is at

equilibrium before t = 0, a force acts for a period of time after t = 0 after which the

force is zero again. Then B = 0 and the change in the oscillator energy can be written as

(exercise)

∆E =
1

2m

∣∣∣∣∫ ∞−∞ F (t)e−iωt dt

∣∣∣∣2 .
Thus, the energy transfer is controlled by the absolute value of the Fourier component of

the force with frequency ω. If the time during which the force acts is small compared to
1
ω , then eiωt is approximately constant in the integral, and hence

∆E ≈ 1

2m

∣∣∣∣∫ ∞−∞ F (t) dt

∣∣∣∣2 .
Here the change in energy is controlled solely by the impulse imparted by the force since

the time scale is so short that no appreciable change in potential energy occurs while the

force acts. In the limit where

F (t) = fδ(t− t0),

this approximation becomes exact (exercise).

Homework Problem

Consider an oscillator with mass m and natural frequency ω, initially at rest, which

undergoes a constant force F0 for a finite period of time T . Show that after the force ceases

(t > T ) the system is oscillating harmonically. Determine the amplitude of this oscillation.

Your answer should (only) depend upon F0,m, ω, T .
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