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First integrals. Reduction. The 2-body problem.

Relevant Sections in Text: §3.1 – 3.5

Explicitly Soluble Systems

We now turn our attention to some explicitly soluble dynamical systems which are

very important in mechanics. The systems we will study include one dimensional systems,

two body central force systems, and linear (oscillatory) systems. In each of these cases

the explicit solubility of the equations of motion arises from the existence of suitable

symmetries/conservation laws. The method by which we solve for the motion of these

systems involves an important mechanics technique we shall call reduction.

First integrals and motion in one dimension

We turn our attention to a class of dynamical systems which can always be understood

in great detail: the autonomous system* with one degree of freedom. For autonomous

systems with one degree of freedom the motion is determined by conservation of energy.

We shall explore this for Newtonian systems, i.e., for systems described by Lagrangians of

the form L = T − V .

Often times the study of motion of a dynamical system can be reduced to that of

a one-dimensional system. For example, the motion of a plane pendulum reduces to

dynamics on a circle. Another example that we shall look at in detail is the 2-body central

force problem. Finding the motion of this system amounts to solving for the motion of

the relative separation of the two bodies, which is ultimately a one-dimensional problem.

No matter how the one-dimensional system arises, in very general circumstances we can

completely solve the equations of motion.

Although we could proceed more generally, we will restrict our attention to the very

common situation where the Lagrangian for a one-dimensional system is of the form

L =
1

2
a(q, t)q̇2 − V (q, t),

where q is the generalized coordinate for the system and a, V are some given functions.

For example, a plane pendulum of length l and mass m has (exercise)

a(q, t) = ml2,

* Recall that a dynamical system is “autonomous” if its equations of motion do not have
explicit time dependence.
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and

V (q, t) = −mgl cos q.

Here q is the angular position of the pendulum from the vertical.

As another example, consider a plane pendulum whose length oscillates according to

l = l0 cos γt. In this case (exercise)

a(q, t) = ml20 cos2(γt),

and

V (q, t) = −mgl0 cos(γt) cos(q).

Here we see how the kinetic and potential energies can get an explicit time dependence.

Yet another example arises when we consider a particle moving on a curve y = 0,

z = f(x) under the influence of gravity (a roller coaster!). This system has (exercise)

a(q, t) = m(1 + f ′2)

and

V (q, t) = mgf(q),

where we have chosen the position on the x-axis to be q. Here we see how the kinetic

energy can become a function of the generalized coordinate.

Our main result is the following. For Lagrangians of the form

L =
1

2
a(q)q̇2 − V (q),

i.e., with no explicit time dependence, the equations of motion can be solved “up to

quadrature”. This means that the solution can be found using only integration and algebra.

The proof uses conservation of energy. Since ∂L
∂t = 0, we have that

E =
1

2
a(q)q̇2 + V (q)

is constant (time independent) when evaluated on a solution to the equations of motion

(EL equations). Thus we have (exercise)

1

2
a(q(t))

(
dq

dt

)2

+ V (q(t)) = constant ≡ E.

For a given value of E, we thus get a first-order (albeit non-linear) ODE for q(t). Since the

EL equations are second-order (exercise) we have, in effect, used conservation of energy to

integrate the equations of motion once. For this reason one often calls E a first integral
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of the equations of motion. Another way to see the origin of this terminology comes from

writing the conservation of energy as the identity built from the EL equations:

d

dt

[
1

2
a(q)q̇2 + V (q)

]
= q̇

(
V ′ − 1

2
a′q̇2 +

d

dt
(aq̇)

)
,

where
∂L

∂q
− d

dt

∂L

∂q̇
= −

{
V ′ − 1

2
a′q̇2 +

d

dt
(aq̇)

}
.

You can see from this identity that if we multiply the EL equations of motion by −q̇ then

we can write the result as the derivative of E.

Conservation of energy replaces the EL equation with a first-order ODE, which can

be solved as follows. Fix a numerical value for E; this is equivalent to partially fixing the

initial conditions.* We then rearrange the energy conservation equation given above into

the form

dt = ±

√
a(q)

2(E − V (q))
dq,

so that, upon integrating both sides,

t− t0 = ±
∫ q

q0

√
a(x)

2(E − V (x))
dx.

Here q0 is the other integration constant (besides E) which arises when solving a second

order ODE. t0 is free parameter corresponding to a choice of initial time; when t = t0
we have q = q0. Note also that we have a sign choice to make when taking the square

root. This choice specifies whether the velocity is initially toward increasing or decreasing

q. with an increase in time. Both behaviors are possible in general; the boundary between

these two types of motion is a time where the velocity vanishes. By specifying the ± sign,

the value of q0, and the value of E we have completely specified the solution. Thus these

choices are equivalent to specifying the initial values of q and q̇ (exercise).

By performing the indicated integral we get a formula t = t(q), which also depends

upon the initial position, initial time, and energy. To get the solution of the equations of

motion, q = q(t), we need to invert this formula. This can be done provided dt
dq is finite

and non-vanishing (exercise). This is guaranteed by the equations of motion away from

points where E = V , i.e., where the kinetic energy vanishes. As we shall see, these are

isolated points. Away from such points we can solve (in principle) for q = q(t), which

also depends upon the initial position, initial time, and energy. By continuity we get

* The EL equations are a single second order ODE. Solutions are uniquely determined by
2 numbers, corresponding, e.g., to the initial values of q and q̇. By fixing a value for the
energy we are putting one condition on the initial q and q̇ values.
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the solution everywhere. We thus get the solution to the equations of motion depending

upon two constants of integration (q0 and E). We also have the ± sign in the solution.

Specifying q0 and E and a choice of sign is equivalent to specifying the initial position and

velocity (exercise). Thus we obtain the general solution to the equations of motion.

Motion in One Dimension: Examples

For sufficiently simple forms of a(q) and V (q) a closed form expression for the motion

of the system can be found. Let us look at some elementary examples.

Free Particle

Here V (q) = 0 so that L = 1
2mv

2, hence

t− t0 = ±
∫ q

q0

√
m

2E
dx

= ±
√

m

2E
(q − q0).

We thus recover the familiar free particle motion (exercise)

q = q0 + v0(t− t0),

where

v0 = ±
√

2E

m

is the initial velocity.

Constant Force

We choose V (q) = −Fq where F is the constant force on the particle so that L =
1
2mq̇

2 + Fq. We find (exercise)

t− t0 = ±
∫ q

q0

√
m

2(E + Fx)
dx

= ± 1

F

√
2m(

√
E + Fq −

√
E + Fq0).

You can easily check that this leads to the usual quadratic dependence of q on time

(exercise).

Harmonic Oscillator
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A simple harmonic oscillator is treated via

t− t0 = ±
∫ q

q0

√
m

2(E − 1
2kx

2)
dx

= ±
√
m

k

[
sin−1(

√
k

2E
q)− sin−1(

√
k

2E
q0)

]
.

We can thus write the solution in the familiar form (exercise)

q(t) = A sin(ωt+ α),

where

ω = ±
√
k

m

A =

√
2E

k

and

α = sin−1(
q0
A

).

More complicated potentials may or may not be amenable to analytic computations,

that is, explicity evaluation of the integral. For example, the simple plane pendulum

has V (q) = mgl cos q and this leads to an elliptic integral (exercise), which is not as

tractable analytically as the previous examples. Still, one can extract whatever information

is needed from the elliptic integral, if only numerically. Of course, in the small oscillation

approximation this integral reduces to our harmonic oscillator example.

Motion near equilibrium

Let us consider the motion near a stable equilibrium. Stable equilibrium occurs at

points q0 where

V ′(q0) = 0, V ′′(q0) > 0.

Of course, if we start the system off so that E = V (q0), then the velocity is zero and must

remain zero for all time (exercise). If the system has E − V (q0) = ε << 1, ε > 0, then the

particle never goes very far from the equilibrium position. In this case we can approximate

the potential as

V = V (q0) +
1

2
V ′′(q0)(q − q0)2

and we can approximate

a(q) ≈ a(q0).
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With this approximation, we are back to our harmonic oscillator example with the substi-

tutions

m→ a(q0), k → V ′′(q0), E → ε.

In particular, the motion is not just periodic but harmonic (frequency independent of

amplitude) with frequency

ω =

√
V ′′(q0)

a(q0)
.

Example: A Falling Rod

Let us work a non-trivial example in a little detail. Consider a thin rigid rod of mass m

and length L standing upright in a uniform gravitational field. This is a state of unstable

equilibrium, the slightest perturbation of its position or horizontal velocity will cause the

rod to fall. Let us compute the time it takes to fall. We make the simplifying assumption

that the base of the rod does not move relative to the ground. Thus the system has one

degree of freedom corresponding to rotation of the rod about an axis perpendicular to and

through the bottom end of the rod. We choose as our generalized coordinate the angle θ

between the rod and the ground. The kinetic and potential energies are (exercise)

T =
1

6
mL2θ̇2, V =

mgL

2
sin θ.

The conserved total energy is T + V so that, for initial conditions characterized by θ0 and

E, we have

t− t0 = ±
∫ θ

θ0
dx

√√√√ 1
3mL

2

2(E − mgL
2 sinx)

= ±

√
L

3g

∫ θ

θ0
dx

√
1

α− sinx
,

where

α =
2E

mgL
.

This results in an expression involving elliptic integrals of the second kind, which is not

surprising since our model of the falling rod is just a pendulum. Let us consider the time it

takes for the rod to fall to the ground. This means θ should decrease in time; we need the

minus sign in the above formula. Just to get some numbers, let us choose L = 2m, α = 1,

θ = 0, and θ0 = π
2 −0.1 radian. This corresponds to a very small initial displacement from

the vertical and a very small initial velocity. We then get (exercise) t− t0 = 1.04s.

Qualitative Description of the Motion

We now indicate some general, semi-qualitative techniques for analyzing the motion of

autonomous systems with one degree of freedom We are still assuming that the Lagrangian
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has no explicit time dependence. Conservation of energy determines the motion. Let us

assume that a(q) > 0. Because the kinetic energy is positive and the solutions to the

equations of motion must be real, it follows that the value of q must be such that total

energy cannot be less than the potential energy:

V (q) ≤ E.

For a given value of the energy E, the isolated points where E = V are called turning points

since the velocity must vanish there. Generically, the velocity changes direction (as time

increases) at a turning point, keeping the “particle” in the domain where E ≥ V (q). If the

energy is such that the allowed region of motion is surrounded by a pair of turning points,

then the motion is bound and periodic (exercise). If the energy is such that a given region

only has one or no turning point, then the “particle” will move to infinity, perhaps after

encountering a turning point. We say that the motion is unbound. Exceptional cases occur

when the energy is such that the turning point is a maximum or minimum of the potential.

In this case the motion is that of a (un)stable equilibrium or is such asymptotically.

For bound motion it is easy to see that the motion must be periodic (exercise).* The

period τ of the motion can be computed from our integral expression for the solution to

the equations of motion. For a given value E of the energy we have (exercise)

τ(E) =

∫ q2

q1

√
2a(x)

E − V (x)
dx,

where the values q1 and q2 are the turning points of the bound motion, i.e., for a given E,

V (q1) = V (q2) = E. Of course, the existence of two roots is guaranteed by our assumption

that the motion is bounded.†

As a simple example of this latter formula, let us return to the simple harmonic oscil-

lator. The turning points are (exercise)

q1 = −
√

2E

k
, q2 =

√
2E

k
.

* Note that “periodic” does not mean “harmonic”. In general the period of the motion
depends upon the amplitude, i.e., the turning points.
† As a very nice exercise, you should be able to show that – unless the turning point is at a

critical point of the potential – the period is always finite. This is not immediately obvious
since the integrand blows up as you approach a turning point. What happens physically
when the integral does diverge?
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We thus get (exercise)

τ(E) =

∫ √ 2E
k

−
√

2E
k

√
2m

E − 1
2kx

2
dx,

= 2

√
m

k
[sin−1(1)− sin−1(−1)]

= 2π

√
m

k
.

To summarize, when the Lagrangian for a one-dimensional system is of the form

L =
1

2
a(q)q̇2 − V (q),

the motion can be completely determined and involves the familiar cases of periodic bound

motion, unbound motion, as well as stable and unstable equilibria. This very regular

type of motion arises because conservation of energy is “running the show”. If we drop

conservation of energy, i.e., we let t appear in the Lagrangian, then the motion of the

system can be considerably more complicated. Indeed, already in the relatively simple

setting of a system with one degree of freedom and a time dependent Lagrangian, it is

possible to find chaotic motion.

Two Body Central Force Problem

We have already mentioned the two body central force problem several times. Here we

shall begin a systematic study of this important dynamical system. As we shall see, the

conservation laws admitted by this system allow for a complete determination of the motion

(up to quadrature). Many of the topics we have been discussing in previous lectures come

into play here. While this problem is very instructive and physically quite important, it is

worth keeping in mind that the complete solvability of this system makes it an exceptional

type of dynamical system. We cannot solve for the motion of a generic system as we do

for the two body problem.

The two body problem involves a pair of particles with masses m1 and m2 described

by a Lagrangian of the form:

L =
1

2
m1~̇r

2
1 +

1

2
m2~̇r

2
2 − V (|~r1 − ~r2|).

This Lagrangian is invariant under spatial translations, time translations, rotations, and

boosts.* Thus, as discussed earlier, we will have conservation of total energy, total mo-

mentum and total angular momentum for this system.

* “Boosts” are transformations corresponding to changing to a reference frame moving with
constant relative velocity. The totality of these symmetry transformations (spacetime
translations, rotations, boosts) in non-relativistic Newtonian mechanics forms a group
known as the Galileo group.
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The EL equations are equivalent to (exercise)

m1~̈r1 = V ′(|~r1 − ~r2|)
~r2 − ~r1
|~r1 − ~r2|

,

m2~̈r2 = V ′(|~r1 − ~r2|)
~r1 − ~r2
|~r1 − ~r2|

.

Here the prime on the potential energy function denotes a derivative with respect to its

argument. The equations of motion consist of 6 coupled ODEs corresponding to the 6

degrees of freedom. In general these equations are non-linear.*

From these equations we see that the force exerted on each particle (i) is equal in magni-

tude and opposite in direction to that on the other particle (i.e., this force obeys Newton’s

third law); (ii) is directed along a line joining the (instantaneous) particle positions, and

(iii) has a magnitude depending only on the distance between the particles.

Of course, the standard example of such a two body problem arises in the motion

of gravitating bodies (“Kepler problem”), or in the motion of a pair of electric charges

ignoring magnetic and radiative effects. In each case the potential energy is of the form

V ∝ 1

|~r1 − ~r2|
.

The constant of proportionality depends upon the masses, charges, gravitational constant,

etc.

Reduction to relative motion

Our first step toward solving the two body problem is to reduce the problem to that of

the relative motion of the two bodies. The physical idea is simple. Given the homogeneity

of space, the absolute position of either of the particles has no relevant meaning. Only

the relative position should matter. This idea manifests itself as follows. Because the

system is invariant under spatial translations, total momentum will be conserved. This

means the motion of the center of mass will be at constant velocity in any inertial reference

frame (IRF) (exercise). So, this conservation law tells us that 3 degrees of freedom move

as a free particle. The remaining 3 degrees of freedom describe the relative motion of

the particles; it is here where all the interesting dynamics lie. This effective reduction in

degrees of freedom from 6 to 3 as arises from the conservation of total momentum (which

is the center of mass momentum) of the system.

Let us now make the above comments mathematically precise. Make a change of

generalized variables (i.e., a point transformation):

~R =
m1~r1 +m2~r2
m1 +m2

,

* There is one exceptional case where the equations are linear. Can you see what this case
is?
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~r = ~r1 − ~r2.

We call ~R the center of mass position and we call ~r the relative position. This is easily seen

to be an invertible transformation (exercise). We can express the Lagrangian as (exercise)

L =
1

2
(m1 +m2) ~̇R

2
+

1

2
m~̇r

2 − V (|~r|),

where

m =
m1m2

m1 +m2

is the reduced mass of the system. We see that, in these coordinates, the Lagrangian is of

the form

L(~r, ~R, ~̇r, ~̇R) = Lcm( ~̇R) + Lrelative(~r, ~̇r),

indicating that the center of mass motion ~R(t) and relative motion ~r(t) are completely

decoupled (exercise). We can solve for the motion of ~R and ~r separately. The motion of
~R is obvious:

~R(t) = ~R0 + ~V t.

By a suitable choice of inertial reference frame we can even set ~R(t) = 0 without affecting

~r(t) (exercise). Put differently, up to a boost — which is a symmetry for this system —

all solutions to the equations of motion can be obtained by setting ~R(t) = 0 and solving

for the relative motion. Once we have determined ~r(t), we can easily reconstruct ~r1(t) and

~r2(t) from ~r(t) and ~R(t) (exercise).

In any case, the only non-trivial problem to solve is the relative motion problem. We

henceforth focus on the Lagrangian

L =
1

2
m~̇r

2 − V (|~r|),

which describes the relative motion. Note that, mathematically speaking, this dynamical

system is indistinguishable from a single particle moving in three dimensions subject to

a central force field directed at fixed point in space. We have thus used the conservation

of total momentum to reduce the analysis of the motion of two bodies interacting by a

central force to the analysis of a system mathematically equivalent to that of a single

particle moving in a central force field. All our subsequent analysis will apply to this

physical system. Keep in mind that, in applications to the 2-body problem, the “particle”

with mass m and position ~r is fictitious: its position is really the relative position of the

two bodies, and the “particle” mass is really the reduced mass of the two body system.

Exercise: Show that when m2 >> m1 we can work in a reference frame in which m2 is

(approximately) at rest and we can view the reduced Lagrangian as describing the motion

of m1 in the fixed force field of m2.
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A small digression: Lagrangian Reduction

By a clever change of variables in the 2 body problem, (~r1, ~r2) → (~R,~r), we are able

to obtain a Lagrangian in which three coordinates, namely (Rx, Ry, Rz), are cyclic. Thus

the center of mass degrees of freedom “move” according to free particle EL equations and

can be eliminated from the problem leaving us with a reduced problem involving 3 fewer

degrees of freedom. You can see now why cyclic coordinates are also sometimes called

“ignorable”.

The reduction of the 2 body problem to a problem involving only 3 degrees of freedom

by using conservation of total momentum is an instance of what is usually called Lagrangian

reduction. This term describes the effective reduction in degrees of freedom afforded by

a conservation law. A trivial example of Lagrangian reduction occurs already for motion

in one-dimension q described by a time independent Lagrangian. The conservation of

energy allows us to completely solve for q(t) (up to quadrature)—thus leaving no more

degrees of freedom to worry with. As we shall see, the complete integration of the EL

equations for the 2-body problem is nothing but a sequence of Lagrangian reductions.

There is a very general and powerful theory of reduction in mechanics (and field theory),

but it will take us too far afield to develop it systematically. The best version of it takes

place in the Hamiltonian formalism (to be discussed later), where the technique is called

“symplectic reduction”. Still, even though we will refrain from developing the general

theory of Lagrangian reduction, because this is such an important tool in mechanics it is

worth digressing for a moment to look at a couple of other examples of this phenomenon.

Example: Spherical Pendulum

The Lagrangian is

L =
1

2
mR2(θ̇2 + sin2 θφ̇2) +mgR cos θ.

The coordinate φ is ignorable – it does not appear in L – and hence (exercise)

mR2 sin2 θφ̇ = l = constant.

If we fix a value for the constant l (part of the specification of initial conditions) this

equation can be used to eliminate the φ degree of freedom in terms of an integral involving

θ(t):

φ(t) =

∫ t

t0
ds

l

mR2 sin2 θ(s)
,

Thus we have reduced the problem to understanding time evolution of a single degree of

freedom, θ. Once we find θ(t) we can easily obtain φ(t) by an integral, and the problem is

solved.
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The motion in θ, i.e., θ(t), is determined by the equation of motion for θ, with φ(t)

eliminated using the conservation law above (exercise). This can be done because φ(t) does

not appear in the equation, only φ̇(t). This is because only φ̇ appears in the Lagrangian.

Thus the cyclic coordinate φ implies a conservation law and a special feature of the θ

equation of motion, namely, that it only involves φ̇. These two effects of cyclic φ lead to

the reduction we are discussing. The equation of motion for θ is equivalent to conservation

of energy, so alternatively, we can eliminate φ̇ in the energy:

E =
1

2
mR2θ̇2 +

1

2

l2

mR2
sin2 θ −mgR cos θ,

and use the conservation of energy to find θ(t) as described earlier.

Thus we use the conservation of angular momentum to reduce the two degrees of

freedom of the pendulum to an effective one-dimensional system which can be solved via

conservation of energy.

Example: Plane pendulum with moving point of support.

The Lagrangian is

L =
1

2
(m1 +m2)ẋ2 +

1

2
m2

(
2lẋφ̇ cosφ+ l2φ̇2

)
−m2gl cosφ.

The coordinate x is ignorable – it does not appear L, so that the conservation law is

(m1 +m2)ẋ+ (m2lφ̇ cosφ) = constant ≡ p.

This conservation law can be used to eliminate x(t) once p is specified and φ(t) is known.

Thus we end up with a reduction to a single degree of freedom φ. As in our previous

example, we can find the motion of φ by eliminating ẋ from the energy in terms of φ(t)

and the constant p and then using conservation of energy to find φ(t).

In the two body problem, we likewise used the conservation of total momentum – 3

conservation laws – to reduce the problem from 6 to 3 degrees of freedom. The change

of variables from particle positions to center of mass and relative positions made manifest

that the center of mass position is cyclic/ignorable. Unlike our two examples above, the

particular geometry of center of mass and relative motion is such that this reduction is

particularly simple: the two sets of degrees of freedom completely decouple. In general

this decoupling need not occur, instead we get the scenario typified in the previous two

examples. Indeed, we can use conservation laws to further reduce the relative motion

problem, even though we don’t get a decoupling.

Two Body Problem: Reduction to 1 radial degree of freedom.

We now return to our study of the 2 body problem, which has been reduced to the

problem of a (fictitious) particle moving in a time independent central force field described
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by the Lagrangian

L(~r, ~̇r) =
1

2
m~̇r

2 − V (|~r|).

The EL equations are*

m~̈r = −∇V = −V ′(|~r|) ~r
|~r|
.

To get this far we have used the conservation of total momentum. We still have conservation

of angular momentum and conservation of energy at our disposal. In this section we

implement the reduction procedure associated with conservation of angular momentum.

Note that L(~r, ~̇r) given above is rotationally invariant about any axis through the

center of force (exercise). Thus the angular momentum,

~l = ~r × ~p,

is conserved. Note that this the angular momentum of the relative motion.

Homework Problem: Show that the conserved angular momentum ~l is the total angular

momentum of the 2-body system defined relative to the center of mass.

Naively, since there are 3 conserved components in ~l, it is tempting to believe we can

use conservation of angular momentum alone to completely integrate the EL equations.

This turns out not to be the case because of a technical subtlety: at any given point ~r,

only 2 components of angular momentum are linearly independent — this follows from the

fact that

~r ·~l = 0.

For this reason we can use conservation of angular momentum to eliminate only 2 degrees

of freedom. We could do this by writing out the equations and just computing things as we

did in the Lagrangian reduction examples – those pendulum examples – we shall do this

below. But, first, a more elegant and useful geometric point of view is worth exploring.

For any motion of the system, the vector ~l is fixed in space for all time. (Of course

which vector this is depends upon the initial conditions, i.e., upon which solution is being

studied.) Because

~r(t) ·~l = 0 = ~p(t) ·~l,

it is easy to see that the motion ~r(t) of the “particle” is always in a plane orthogonal to ~l,

unless ~l = 0. In the ~l = 0 case there are three possibilities (1) ~r = 0, which we don’t allow;

* Notice that we allow division by the magnitude of ~r. The configuration space for this
“particle” is actually Euclidean space with a point – the origin – removed, R3−{0}, since
we will not consider the configuration where the two particles are at the same location.
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(2) ~p = 0, which can’t happen for more than a single instant of time; the acceleration

of ~r is such that at the next instant of time ~p 6= 0 and is parallel to ~r; (3) ~r and ~p are

proportional, in which case the particles are moving along the line joining them. This is,

of course, also motion in a plane. So, let us suppose, without loss of generality, that we

have chosen a plane for the orbit to lie in. This specification amounts to a choice of the

allowed initial conditions. Alternatively, the initial conditions pick out a plane orthogonal

to ~l that the motion will lie within. For ~l 6= 0, this choice is equivalent to specifying the

direction of the angular momentum vector. Although we are to imagine having made a

definite choice for this plane, it is completely arbitrary and no special features of the choice

will be used in what follows. Furthermore, the rotational symmetry which spawned the

conservation law means any other choice of plane, i.e., another set of initial conditions,

can be obtained from the one we choose by a rotation. Since rotations map solutions to

solutions,* we can get all solutions from the one obtained by restricting to a given plane

by simply rotating the obtained solutions. So, we can restrict our study to motion in a

plane with no essential loss of generality. Thus we have used conservation of the angular

momentum direction to reduce the system by one degree of freedom, i.e., we now have a

problem of motion of a “particle” in a plane.

As a good exercise you should confirm that (1) if the coordinates are chosen so that

the initial position and velocity are in the x-y plane, z(0) = 0, ż(0) = 0, then lx = ly = 0;

(2) the equations of motion preserve z = 0 = ż for all time.

The equations of motion, when restricted to the x-y plane, can be expressed in polar

coordinates (r, φ). The equations of motion for r(t) and φ(t) are (exercise)

mr̈ = mrφ̇2 − V ′(r),

d

dt
(mr2φ̇) = 0.

These equations can be derived from the Lagrangian (exercise)

L(r, ṙ, φ̇) =
1

2
m(ṙ2 + r2φ̇2)− V (r).

This Lagrangian can be obtained by simply setting θ = π
2 in the original Lagrangian,

L(~r, ~̇r), after expressing the Lagrangian in spherical coordinates (exercise). That this

is the correct procedure in this particular step can be justified by a general theory of

Lagrangian reduction, which we won’t be able to explore. But it is worth noting that, in

general, it is dangerous to simply eliminate degrees of freedom in the Lagrangian, since

one can obtain incorrect EL equations by this procedure (see below). The reason it works

* Any symmetry of the Lagrangian transforms a solution of the EL equations into another
solution of these same equations. It is a good exercise to prove this.
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in this case is can be understood from the observation that we are permitted to impose the

holonomic constraint θ = π/2 in the Lagrangian, as discussed when analyzing dynamical

systems with constraints. Anyway, we have now reduced our analysis to that of a system

with 2 degrees of freedom, namely (r, φ).

Let us summarize the situation thus far. We started with 6 degrees of freedom. The

conservation of total momentum allowed us to reduce to 3 (relative) degrees of freedom.

The conservation of the direction of angular momentum allows us to reduce to 2 degrees of

freedom. The reduced system at this stage consists of a “particle” with the reduced mass

m moving in a plane (not including the origin) under the influence of a central force.

So far we have used the fact that the direction of ~l is a constant of motion, we still can

use the fact that the magnitude of ~l is conserved. Having chosen our z-axis along ~l, the

magnitude of ~l is, of course, the z-component of angular momentum:

|~l| = mr2φ̇ = constant = l.

That this quantity is a constant of motion is easily seen directly from our latest Lagrangian,

L(r, ṙ, φ̇), since φ is cyclic. As discussed in our previous examples, we can use this conser-

vation law to reduce our analysis to that of a system with 1 degree of freedom. Specifically,

we can use the conservation of l to eliminate φ(t) in terms of r(t) and the constant l. We

have

φ̇ =
l

mr2
, =⇒ φ(t) =

∫ t

t0
ds

l

mr2(s)
.

The reduced equation of motion for r(t) is (exercise)

mr̈ = − d

dr
Veff(r),

where

Veff = V (r) +
l2

2mr2
.

This equation of motion can be derived from the Lagrangian for a system with a single

degree of freedom (exercise):

L =
1

2
mṙ2 − Veff(r).

Note that this Lagrangian is not obtained by using conservation of angular momentum

to algebraically eliminate φ̇ from L(r, ṙ, φ̇). One way to see it is not permissible to eliminate

φ̇ from the Lagrangian this way is that the formula being used to eliminate φ̇ is not

compatible with the fixed endpoint conditions of the variational principle.

We now have reduced the problem to an autonomous system with one degree of free-

dom. As we have discussed, we can handle this problem using conservation of energy. The
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total conserved energy of the system is correctly given by simple substitution for φ̇ in the

conserved energy for the motion in the plane (exercise):

E =
1

2
mṙ2 + Veff .

The contribution of the angular momentum to the effective potential energy represents

an effective repulsive force (exercise) due to the angular motion of the “particle”. For this

reason, the term l2

2mr2
is often called the “centrifugal energy”.

We have reduced the dynamics of the two body problem to that of a system of one

degree of freedom, r, described by the Lagrangian

L =
1

2
mṙ2 − Veff(r),

where

Veff = V (r) +
l2

2mr2
.

Using the conservation of energy, in which

E =
1

2
mṙ2 + Veff ,

we can express the motion of the radial degree of freedom via (exercise)

t− t0 = ±
∫ r

r0

1√
2
m(E − V (x))− l2

m2x2

dx.

Thus using conservation of total momentum, angular momentum, and energy we are able

to solve the equations of motion “up to quadrature”.

Note that we tacitly assume that E 6= Veff in the above formula. This excludes that

case where the radial motion is at an equilibrium point: ṙ 6= 0. Of course when ṙ = 0 this

is either a turning point, which is easily handled by continuity of the orbit (as discussed

earlier), or one has r = constant, i.e., circular motion.

The orbits

The preceding reduction procedure provides a method for analyzing the motion in

time of the two bodies. There is no closed form expression, however, for this motion –

it is generally too complicated to be expressed using elementary analytic functions. It

is possible, however, to find the path (relative) motion at the expense of dropping all

information about how the path is traced out in time.
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To begin, we have the relation between

φ̇ =
l

mr2(t)
,

which means

dφ =
l

mr2(t)
dt.

Provided l 6= 0, we can parametrize the curves in configuration space with φ instead of t.

Going back to the conservation of energy formula and trading dt for dφ we have (exercise)

dφ = ± l

r2
√

2m(E − V (r))− l2

r2

dr. (1)

Thus we can express the angular motion as the integral:

φ− φ0 = ±
∫ r

r0

l

x2
√

2m(E − V (x))− l2

x2

dx. (2)

Typically, it is far easier to perform this integral than those needed to get the motion in

time. Mathematically, this is because of the extra 1
x2

factor in the integrand. Physically

this is because, by dropping the dependence on time, the integral does not have to convey

so much information about the motion of the “particle”.

We can understand this integral expression in another way. Consider the radial equa-

tion of motion:

mr̈ = −V ′eff(r).

Make the change of variables dφ = l
mr2(t)

dt. After a little algebra we get the differential

equation for the orbit r = r(φ):

l

r2

d

dφ

(
l

mr2

dr

dφ

)
= −V ′eff(r).

The solution r = r(φ) is determined by the integral expression (2) given above. This

follows from the first integral for the orbit equation

1

2

l2

m2r4
r′2 + Veff = E,

which is just conservation of energy expressed in terms of the orbit r(φ).

The relation between r and φ from the last integral gives the path traced out by the

“particle” via φ = φ(r). If desired, we can invert to get r = r(φ), which is the orbit of

the particle. Knowledge of the orbit (path) carries no information about how the path is
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traced out in time. This is obtained from the integral relating r and t, giving r = r(t) and

φ = φ(t) = φ(r(t)). For a given choice of the energy E, the values of r where

E = Veff(r),

define the turning points of the radial motion. At the turning points the radial velocity

vanishes; it changes sign as the particle passes through the turning point. Of course, the

“particle” doesn’t actually come to rest at the turning point since its angular motion is

monotonic in time, as can be seen from the conservation of angular momentum formula

(exercise). If E is such that there are two turning points then we have a bound state

and the motion is confined to an annular region in the plane of motion; we have orbital

motion. If there is only one turning point the motion is unbound and we have a scattering

situation, which we may discuss later.

For now, let us restrict our attention to bound motion. If the potential energy function

is such that Veff has a minimum, and if E takes that minimum value, then the radial motion

is that of stable equilibrium. In this case r = constant and the motion is circular and, of

course, periodic. More generally, however, the motion is considerably more complicated.

Even though the bound motion is periodic in the radial variable, this does not mean that

the motion in the plane is periodic. This is because the time it takes for φ to change by 2π

need not be the same as the time it takes for r to pass through one cycle. In detail, during

the time that the radial variable passes through one cycle, the angle changes by (exercise)

∆φ = 2

∫ r1

r0

l

x2
√

2m(E − U(x))− l2

x2

dx,

where r0 and r1 are the turning points of the radial motion. For the path of the “particle”

in the plane to define a closed orbit ∆φ must be a rational multiple of 2π:

∆φ =
p

q
(2π),

so that after q cycles in the radial motion the angular variable will have made a net change

of 2πp, i.e., the “particle” will have made p revolutions.

Generically, that is, for “almost all” potentials V (r), the condition just stated for

closure of the orbit will not be satisfied. Thus, for a typical central force problem the

relative motion will correspond to that of a “particle” that follows a curve about the origin

which is bounded by r0 and r1 and eventually passes through every point in this annular

region. Exceptions to this occur when V ∝ 1
r (Kepler problem; to be discussed shortly)

or V ∝ r2 (isotropic oscillator). We shall see shortly that there is a hidden symmetry and

conservation law in these exceptional cases that “explains” the closure of the orbits.

Finally we note that thanks to the repulsive effect of the “centrifugal energy”, the

“particle” cannot reach the center of force r = 0 (where the 2 bodies collide) unless the
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central force is sufficiently attractive — and singular — as r → 0. To see this, simply

consider the formula for the energy. Assuming that r is changing, and using the fact that

the radial contribution to the kinetic energy is positive, we have the inequality (exercise)

r2V (r) +
l2

2m
< Er2

or

r2(V (r)− E) < − l2

2m
.

This means that as r approaches zero V ∼ −cr−α, up to an additive constant, with c > 0

appropriately chosen, and α ≥ 2. Of course, if l = 0 this condition has much weaker

implications for the potential.

Exercise: What is the nature of the motion if l = 0?
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