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Phase Space Variational Principle. Canonical Transformations.

Relevant Sections in Text: §8.5, 8.6, 9.1–9.5

Hamilton’s principle and Hamilton’s equations

You will recall that the Lagrangian formulation of mechanics arises from a variational
principle, known (somewhat confusingly at this point) as Hamilton’s principle. Hamilton’s
principle determines physically allowed curves in configuration space. Physically allowed
curves are critical points of the action integral:

S[q] =
∫ t1

t0
L(q(t),

dq(t)
dt

, t) dt,

with fixed endpoint conditions. This means that, if q̂i(t) defines the physical curve, then
for any other path qi(t), where

qi(t) = q̂i(t) + δqi(t), δqi(t0) = δqi(t1) = 0,

we have that S[q]−S[q̂] is zero to first order in the variations δq. We saw that the critical
curves in configuration space satisfied the EL equations. The Hamilton equations deter-
mine curves in momentum phase space. Since the Hamilton equation and EL equations
are equivalent (when viewed as differential equations for curves in configurations space)
it is natural to wonder if there is a variational principle governing Hamilton’s equations.
There is such a variational principle, and it is defined as follows.

We consider curves (qi(t), pi(t)) in momentum phase space and define the phase space
action integral S[q, p] via*

S[q, p] =
∫ t1

t0
(piq̇

i −H(q, p, t)) dt.

You can easily see that on paths satisfying the Hamilton equations the numerical value of S
is the same as the usual action used in the Lagrangian formulation. This is because piq̇i−
H(q, p, t) is the usual Lagrangian in this case (exercise). On the other hand, previously we
viewed the action as a functional of curves in the (n-dimensional) configuration space and
it was these curves which are varied in the variational principle. Now we are considering

* As usual, it is understood that all quantities in the integral are evaluated on a curve

qi = qi(t), pi = pi(t)

in momentum phase space.
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curves in the (2n-dimensional) phase space in the variational principle. As we evaluate the
phase space action on this or that curve, the curves will not in general satisfy the Hamilton
equations (the critical point condition – as we shall see) and hence the relation between
momentum and velocity does not necessarily hold on the curves in phase space. Thus
the phase space variational principle is distinct from the configuration space variational
principle.

Let us now consider the conditions placed upon the phase space path by demanding
that it provides a critical point of S[q, p]. We suppose that the path qi(t), pi(t) is a critical
point of the action integral. This means that if we substitute

qi(t)→ qi(t) + δqi(t),

pi(t)→ pi(t) + δpi(t),

the first order change in the action integral, δS, with respect to δq and δp vanishes. This
condition is (exercise)

0 = δS =
∫ t1

t0

(
δpiq̇

i + pi
˙δqi − ∂H

∂qi
δqi − ∂H

∂pi
δpi

)
dt = 0. ∀ δqi, δpi.

If we integrate by parts in the second term, and demand that

δqi(t1) = 0 = δqi(t2),

then we get

0 =
∫ t1

t0

[
(q̇i − ∂H

∂pi
)δpi − (ṗi +

∂H

∂qi
)δqi

]
dt.

Because δq and δp are arbitrary in the domain of integration, each of the terms must sep-
arately vanish, thus we obtain Hamilton’s equations by a variational principle. Note that
the coordinates are fixed at the endpoints of the allowed paths (just as in the Lagrangian
variational principle), but the momenta are free at the endpoints.

More on the Phase Space Action Principle

Although the physical interpretation of the ingredients entering S[q, p] are different,
mathematically the phase space action S[q, p] can be viewed as the same kind of integral
we have used before in discussing the calculus of variations, i.e., it is the integral of a
Lagrangian which is a function of some “configuration” variables QA and some velocity
variables Q̇A where

QA = (qi, pi)

and
Q̇A = (q̇i, ṗi).
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Note that for the phase space variational principle the velocities of the momenta, ṗi, do
not actually appear in the phase space “Lagrangian” we are interested in.

Because we can view the integrand of the phase space action as a Lagrangian L on
(Q, Q̇) space:

L(Q, Q̇, t) = piq̇
i −H(q, p, t),

it will not surprise you to find that the Hamilton equations are the EL equations of L. We
have

∂L
∂qi

= −∂H
∂qi

,
∂L
∂pi

= q̇i − ∂H

∂pi
,

and
∂L
∂q̇i

= pi,
∂L
∂ṗi

= 0,

so that the EL equations for L are the Hamilton’s equations (exercise).

Although the Hamiltonian form of the variational principle is different than the La-
grangian form. It is not hard to understand the relation between the two. The Lagrangian
form of the variational principle arises once one has extremized the Hamiltonian action,
S[q, p], with respect to p. To understand this, first recall a basic calculus result. Suppose
that we want to compute the critical points of a function F (x, y). Of course we must solve
the coupled system of equations

∂F

∂x
= 0,

∂F

∂y
= 0

for the critical points (x0, y0). An equivalent procedure is to (1) solve the x equation first:

∂F

∂x
= 0⇒ x = g(y),

(2) substitute into F (x, y) to get a new function

f(y) = F (g(y), y)

and then (3) find the critical points of f(y):

df

dy
= 0.

This latter step determines y0; to determine x0 we simply substitute into g:

x0 = g(y0).

It is a nice calculus exercise to prove that this procedure does correctly find all the critical
points provided one can solve ∂F

∂x = 0 for x as a function of y. If this is not possible, e.g.,
if F is linear in x, then the procedure described above need not work.
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Now, an analogous result is occurring when we find the critical points of the phase
space action. Suppose that we first vary pi – thereby getting the EL equations from L for
the degrees of freedom pi. As we have seen, this gives

q̇i − ∂H

∂pi
= 0,

which will give a relation between momenta and velocities (exercise), which we always
assume can be solved to get

pi = pi(q, q̇, t).

Having solved for pi as functions of the remaining variables, we substitute this expression
for pi into the phase space action S[q, p] thereby obtaining a reduced action on configuration
space (exercise)

S[q] = S[q, p(q, q̇, t)] =
∫ t1

t0
L(q, q̇, t) dt.

Finding the critical points of S[q] (with fixed endpoint conditions) then gives the config-
uration space curves qi(t). The analogy with our calculus model is that F is the phase
space action, x is the momentum, y is the coordinate, and f is the configuration space
action. Thus the Lagrangian variational principle can be considered as a consequence of
the Hamiltonian variational principle.

Canonical Transformations: What are they?

You will recall that the Lagrangian formulation of mechanics allowed for a large class
of generalized coordinates. In particular, let qi be a system of coordinates so that the EL
equations of the Lagrangian L(q, q̇, t) give the desired equations of motion. Then if

q′i = q′i(q, t)

is any other system of coordinates, the Lagrangian

L′ = L(q(q′, t), q̇(q′, q̇′, t), t),

where

q̇i(q′, q̇′, t) =
∂qi

∂q′j
q̇′j

will give, by the same EL equation formulas, the correct — i.e., equivalent — equations
in the new variables. This kind of transformation, in which the new coordinates are
functions of the old coordinates and time only, is called a point transformation. The fact
that the same EL formula works in all coordinates related by a point transformation can
be understood from the variational principle point of view. The fact that a configuration
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space curve is a critical point will not depend upon the choice of generalized coordinates
used to compute the action integral.

More general changes of variables in which the new coordinates involve the old velocities
are not allowed; the EL equations will, in general, be wrong. This stems from the fact
that the variational principle is dealing with curves in configuration space only. As a very
simple example of this, consider a free particle with Lagrangian in 1-d

L =
1
2
mẋ2,

and EL equations
mẍ = 0.

Let us define a new variable q via
q = ẋ,

which is not a point transformation. The new Lagrangian, L̃ is given by

L̃ =
1
2
mq2.

The EL equations from L̃ are
mq = 0,

which are clearly not equivalent to mẍ = 0.

The Hamilton equations, since they come from a variational principle in phase space,
allow for a much wider class of allowed coordinate transformations, the canonical transfor-
mations, and this feature is at the heart of many of the powerful aspects of the Hamiltonian
formalism. For example, one can view time evolution as a canonical transformation. The
link between symmetries and conservation laws is given its fullest expression via canonical
transformations. Canonical transformations are at the heart of the most elegant form of
dynamics: the Hamilton-Jacobi formalism (to be discussed later). Canonical transforma-
tions are the classical analog of unitary transformations in quantum mechanics and give a
classical interpretation of the different quantum mechanical representations.

The idea of canonical tranformations is that one can perform point transformations
in phase space, in which the coordinates and momenta get mixed up. However, the key
feature that has to be dealt with is that the phase space Lagrangian L is not just any
function of the (Q, Q̇) variables, but has the special form pq̇ −H. We thus only consider
transformations which preserve this form up to a total time derivative.

We now consider all invertible transformations

Qi = Qi(q, p, t)
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Pi = Pi(q, p, t)

such that the original Hamilton equations, when expressed in terms of the new variables
(Q,P ), become

Q̇i =
∂K

∂Pi

Ṗi = − ∂K
∂Qi

for some choice of K = K(Q,P, t). If we can do this, then we say that the transformation
(q, p) ↔ (Q,P ) is a canonical transformation since it preserves the canonical form of the
equations of motion. From the point of view of the Hamiltonian formulation of mechanics,
any set of variables for which the equations of motion are in Hamiltonian form are equally
viable for the description of the system.

Let us look at a simple example: time-independent point transformations for a system
with one degree of freedom. Let f(q) be a function with inverse g(q):

f(g(q)) = q, g(f(q)) = q.

Given a phase space (q, p) and Hamiltonian H(q, p, t), the following transformation is a
canonical transformation

Q = f(q), P =
dg(Q)
dQ

∣∣∣∣
Q=f(q)

p

with new Hamiltonian

K(Q,P, t) = H(g(Q),
df(q)
dq

∣∣∣∣
q=g(Q)

P, t).

To see this, we compute (nice exercise)

Q̇ =
df(q)
dq

q̇ =
df(q)
dq

∂H

∂p
=
∂K

∂P
,

and

Ṗ =
d2g(Q)
dQ2

∣∣∣∣
Q=f(q)

df(q)
dq

q̇p+
dg(Q)
dQ

∣∣∣∣
Q=f(q)

ṗ

=
d2g(Q)
dQ2

∣∣∣∣
Q=f(q)

df(q)
dq

∂H

∂p
p− dg(Q)

dQ

∣∣∣∣
Q=f(q)

∂H

∂q

= −∂K
∂Q

,

where I used the identity
d2g(Q)
dQ2

df(q)
dq

= −d
2f

dq2
dg

dQ
,
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which comes from differentiating the relation expressing that f and g are inverses.

Here is another, more amusing example. Define

Q = p, P = −q.

Given H(q, p, t), let
K(Q,P, t) = H(−P,Q, t).

For example, if H = p2/2m + V (q), then K = Q2/2m + V (P ). We now verify that the
transformation is canonical by examining Hamilton’s equations in the new variables. We
have

Q̇ =
∂K

∂P
= −∂H

∂q
= ṗ,

and
Ṗ = −∂K

∂Q
= −∂H

∂p
= −q̇.

Perfect.

Note that this canonical transformation interchanges the roles of coordinates and mo-
menta! Evidently, whether or not a variable is from the configuration space is not preserved
by a canonical transformation. Thus the use of the words “coordinates” or “momenta”
is often merely a convenient habit. The Hamilton equations do not require any distinc-
tion between coordinates and momenta aside from knowing which set of variables gets the
minus sign in the Hamilton equations.

Canonical Transformations: How they work

Now that we have some idea what a canonical transformation is, it is time to see how
they are put together. To get at the structure of the canonical transformations we return
to the phase space variational principle, in which the allowed paths satisfying Hamilton’s
equations are critical points of

S[q, p] =
∫ t1

t0
(piq̇

i −H(q, p, t)) dt.

Equally well, we can use

S[Q,P ] =
∫ t1

t0
(PiQ̇

i −K(Q,P, t)) dt.

In each system of canonical coordinates (qi, pi) or (Qi, Pi) the equations of motion come
from a Lagrangian as indicated above. Since the two Lagrangians give the same EL
equations, they must differ by a total derivative (exercise):

piq̇
i −H = PiQ̇

i −K +
dF

dt
.
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Here F = F (Q,P, t). From this formula you can see that the key feature of the canonical
transformation is that all time derivatives — the “dots” appearing in the pq̇ term — go
into the PQ̇ term and the total derivative. Any left over “undotted” terms are used to
relate K and H.

Note that if the transformation (q, p) ↔ (Q,P ) does not depend explicitly upon time
there will be no left over undotted terms. In this case H and K are related by just
substitution for one set of variables in terms of the other. The function F will not depend
explicitly upon t either. In this case we have

piq̇
i − PiQ̇i =

dF

dt
.

Thus canonical transformations are characterized by a function F , which can be viewed
as a function of (q, p, t) or of (Q,P, t). In any case, the function F characterizing the canon-
ical transformation will in general depend upon 2n + 1 variables (coordinates, momenta,
time) and is called the generating function of the transformation.

Any set of variables (Q,P ) such that the action, up to a total derivative, takes the
standard “pq̇−H” form , for some choice of Hamiltonian, are called a set of canonical vari-
ables. Sometimes one also calls canonical variables “canonical coordinates and momenta”,
but this is not a particularly apt designation, as will be seen from the example below.

From our discussion above you can see that the Hamiltonian does not play any role
in determining if a transformation is canonical. The canonical nature of a transformation
is completely determined by what happens to the “pq̇” terms. Canonical transforma-
tions are defined by the phase space only. We also see that when a transformation is
time independent the respective Hamiltonians are related by simple substitution. If the
transformation depends upon time, then there will be ”undotted” terms which modify the
Hamiltonians beyond simple substitution. This makes sense: a coordinate transformation
which depends upon time will inject some new time dependence into the variables. The
Hamiltonian, which determines the time evolution of the system, must then be adjusted
to account for this newly injected time dependence.

Let us return to one of our simple simple examples. Let (q, p) be a set of canonical
variables with Hamiltonian H(q, p, t). Consider the transformation

Q = p, P = −q.

This is a canonical transformation in which

K(Q,P, t) = H(−P,Q, t), F (Q,P, t) = −PQ.

To see this, write

pq̇ −H(q, p, t) = −QṖ −H(−P,Q, t)

= PQ̇−K(Q,P, t) +
d(−QP )

dt
.
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Let us see that the point transformation is canonical. We will even allow for time
dependence. The claim is that the following transformation is canonical

Qi = Qi(q, t), qi = qi(Q, t),

and

Pi =
∂qj

∂Qi
pj , pi =

∂Qj

∂qi
Pj .

To verify this we compute

PiQ̇
i =

∂qj

∂Qi
pj

(
∂Qi

∂qk
q̇k +

∂Qi

∂t

)

We have
∂qj

∂Qi
∂Qi

∂qk
= δ

j
k,

so

PiQ̇
i = piq̇

i + pj
∂qj

∂Qi
∂Qi

∂t
.

Evidently the transformation is canonical and

K = H + pj
∂qj

∂Qi
∂Qi

∂t
= H − pj

∂qj

∂t
.

The last equality here follows from

qi(Q(q, t), t) = qi =⇒ ∂qi

∂Qk

∂Qk

∂t
+
∂qi

∂t
= 0.

Note that if the point transformation is time independent, then the two Hamiltonians (H
and K) are related by simply substituting for the coordinates and momenta.
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