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Physics 6010, Fall 2010

Small Oscillations. Normal Modes.

Relevant Sections in Text: §6.1–6.3, 6.4

Small Oscillations: One degree of freedom.

We now leave the 2-body problem and consider another, rather important class of
systems that can be given a complete analytic treatment. I assume you already know that
the motion of a system in the vicinity of a point of stable equilibrium is approximated by
the superposition of harmonic oscillations. This approximation is very valuable and we
shall spend some time studying it.

Let us begin by considering the motion of a one-dimensional system near a critical
point of the potential energy. While only the simplest systems can be reduced to one
degree of freedom, this case is still particularly important because – as we shall soon see –
multi-dimensional systems (in the vicinity of stable equilibrium) can be reduced to multiple
copies of the one dimensional case.

We assume the Lagrangian is of the form:

L =
1
2
a(q)q̇2 − V (q).

Note in particular that we assume (for now) that the system is closed, i.e., energy is con-
served. Let q0 be a critical point of the potential, so that V ′(q0) = 0. Let us approximate
the motion by assuming that x := q−q0 is “small”. We expand the Lagrangian in a Taylor
series in x, keeping only the first non-trivial terms (exercise):

L(x, ẋ) =
1
2
mẋ2 − 1

2
kx2 + . . . .

Here we have set m = a(q0) and k = V ′′(q0). Of course, the kinetic energy must be
positive, so that m > 0. Note that we also have dropped the irrelevant constant V (q0). If
desired we can adjust the zero point of potential energy so that this constant is zero.

The EL equations are (in the domain of validity of the approximation)

mẍ = −kx.

This equation is easily integrated:

x = Re(Aeiωt), when k 6= 0.

x = at+ b, if k = 0,
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where ω = ±
√

k
m and A is a complex constant encoding the two real integration constants,

which can be fixed by initial conditions. If k > 0, then q0 is a point of stable equilibrium,
and we get harmonic motion. In particular, if x is small initially and the initial veloc-
ity is sufficiently small, then x(t) remains small (exercise), so that our approximation is
self-consistent. On the other hand, if k ≤ 0, then the motion of the particle need not
maintain our approximation of small x; our approximation is not self-consistent and must
be abandoned after a very short time. Of course, the case k < 0 corresponds to unstable
equilibrium, for which a small perturbation leads to a rapid motion away from equilibrium.
If k = 0, then the critical point q0 is not a maximum or minimum but is a saddle point
(“neutral equilibrium”); our approximation again becomes invalid, although the time scale
for this is larger than the case of unstable equilibrium.

Thus in a neighborhood of a point of stable equilibrium it is consistent to make the
harmonic approximation to the potential and kinetic energies. In the harmonic approxi-
mation the motion of the system is mathematically the same as that of a simple harmonic
oscillator.

A very familiar example of all of this is the planar pendulum of mass m and length l

for which q = θ is the deflection from a vertical position. We have

V (θ) = mgl(1− cos θ),

and
a(θ) =

1
2
ml2.

The Lagrangian in the harmonic approximation near equilibrium at θ = 0 is (exercise)

L =
1
2
ml2θ̇2 − mgl

2
θ2,

so that the harmonic motion has “mass” ml2 and angular frequency” ω =
√

g
l . (Exercise:

what happens to motion near θ = π?)

Example

Consider a mass m which is constrained to move on a straight line. The mass is bound
to a fixed point by harmonic force with potential energy V = 1

2K(r − R)2, where K is a
constant, r is the distance of the particle to the fixed point. The distance from the point
to the line is l > R. A mechanical model of this system is a mass sliding on a straight
track; the mass being connected to a fixed point by a spring. Our goal is to find the
stable equilibrium position(s) and compute the frequency of small oscillations about the
equilibrium. Evidently, r2 = x2 + l2, where x is the position of the particle along the
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given line, with x = 0 the location at distance l from the center of force. Using x as the
generalized coordinate, the Lagrangian for this system is (exercise)

L =
1
2
mẋ2 − 1

2
K(
√
x2 + l2 −R)2.

You can check that x = 0 is the only point of stable equilibrium. (As an exercise you can
check that the point x = 0 is a point of unstable equilibrium if we assume R ≥ l.) You
can expand the potential to second order to find that (exercise)

k =
K(l −R)

l
,

so that

ω =

√
K(l −R)

lm
.

Note that K(l − R) is the force needed to move a particle from r = R to the point r = l

(exercise) in the presence of the potential V .

Example

We return to our example of a plane pendulum of length l with horizontally moving
point of support. The mass m1 (the point of support) has position x, and the angular
deflection of the pendulum (mass m2) is denoted by φ. The kinetic energy is

T =
1
2

(m1 +m2)ẋ2 +
1
2
m2(l2φ̇2 + 2lẋφ̇ cosφ),

and the potential energy is
V = −m2gl cosφ.

We have already seen that we can use conservation of the momentum conjugate to x
to effect a Lagrangian reduction which eliminates the x degree of freedom. In detail, the
conservation law we need is

P = (m1 +m2)ẋ+m2lφ̇ cosφ = constant.

This conservation law is just the conservation of the x component of the center of mass of
the system (exercise).

Let us compute the frequency of small oscillations of the pendulum in the reference
frame in which P = 0, so that (exercise)

(m1 +m2)x+m2l sinφ = constant.
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In this reference frame, which is the rest frame of the x component of the center of mass,
the reduced kinetic energy is (exercise)

T =
1
2
m2l

2φ̇2
(

1− m2
m1 +m2

cos2 φ

)
,

and the reduced potential energy is (exercise)

V = −m2gl cosφ.

Clearly φ = 0 is an equilibrium point (exercise). Expanding in powers of φ we get, in the
harmonic approximation,

T ≈ 1
2
m1m2l

2

m1 +m2
φ̇2,

V ≈ 1
2
m2glφ

2.

It is now straightforward to see that the frequency of small oscillations is (exercise)

ω =

√
g(m1 +m2)

m1l
.

Of course, in a generic inertial reference frame the motion of the system in the harmonic
approximation is small oscillations at the above frequency superimposed with a uniform
translation of the center of mass along the x direction.

As a sanity check, let us consider the limit in which m2
m1

<< 1, i.e., the mass at the
point of support is becoming large. Physically, we expect that the point of support moves
with a uniform translation along x. In the rest frame of the point of support (which is now
the approximate center of mass) we have a traditional plane pendulum problem. In this
limit we get (exercise)

ω ≈
√
g

l
,

as expected.

Oscillations of systems with more than one degree of freedom.

So far we have studied (small) oscillations of systems with a single degree of freedom.
Systems with more degrees of freedom can exhibit much more intricate behavior in the
vicinity of stable equilibrium. However, this more intricate behavior can always be viewed
as the superposition of harmonic motions of decoupled degrees of freedom — the normal
modes of vibration. We shall first spend a little time developing the general theory, and
then we shall spend some time on examples.
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Suppose we have a system with n generalized coordinates qi, i = 1, 2, . . . , n, and a
Lagrangian of the form

L =
1
2
gij(q)q̇

iq̇j − V (q).

Recall that we use the summation convention; there is a double sum in the first term of
L. The “metric” gij(q) is a symmetric array which may depend upon the configuration
coordinates. There is no loss of generality by assuming the metric to be symmetric,

gij = gji,

since only the symmetric combination appears in the sum over i and j (exercise). Usually,
the metric is diagonal (e.g., in spherical polar coordinates), but we have seen examples
where the metric is off diagonal (e.g., pendulum with moving point of support).

Critical points of V , i.e., points qi0 such that(
∂V

∂qi

)
(q0) = 0,

define equilibrium configurations of the system (exercise). We will sometimes suppose that
the equilibrium is stable, i.e., qi0 is a (local) minimum of V . But you should always be
thinking about the other types of equilibrium as we go.

Let us approximate the motion in the neighborhood of a point of equilibrium by defining

xi = qi − qi0,

and expanding the Lagrangian in a Taylor series about xi = 0. To the first non-trivial
order we get (exercise)

L ≈ 1
2
Mij ẋ

iẋj − 1
2
Kijx

ixj

where

Mij = gij(q0), Kij =
(

∂2V

∂qi∂qj

)
(q0),

and we have dropped an irrelevant additive constant V (q0), i.e., we have adjusted the zero
of potential energy to be at qi0. We have that Mij = Mji and we assume that the potential
energy is sufficiently smooth so that the matrix of second partial derivatives is symmetric
at the critical point q0:

Kij = Kji.

The (approximate) EL equations are (exercise)

Mij ẍ
j +Kijx

j = 0,
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which are coupled system of n homogeneous, linear ODEs with constant coefficients. Defin-
ing ~x as a column vector with entries xi, and viewing Mij and Kij as (symmetric) matrices
M and K, we can write the EL equations in the matrix form (exercise):

M~̈x = −K~x.

Let us note that if qi0 is a point of stable equilibrium then the symmetric matrix
K is positive definite, that is, it can have only positive eigenvalues.* This is because a
negative or zero eigenvalue will correspond to displacements xi which either lower or do
not change the potential energy in an arbitrarily small neighborhood of the equilibrium
point (exercise), which contradicts our assumption of stable equilibrium. Conversely, since
every symmetric matrix can be diagonalized, if the eigenvalues are all positive definite then
the point qi0 is a minimum. Put differently, qi0 is a point of stable equilibrium if and only
if the quadratic form

K(~x) := Kijx
ixj

is positive definite, which means K(~x) > 0 for all ~x 6= 0. Physically this means that any
displacement xi from equilibrium will increase the potential energy. All this discussion is
just restating standard results from multivariable calculus.

Likewise, positivity of the kinetic energy implies that in any physical application the
symmetric matrix M should be positive definite. This means the quadratic form

M(x) := Mijx
ixj

is positive definite, i.e., M(~x) > 0 for all ~x 6= 0. We assume this in what follows.

Here’s our strategy for analyzing the (approximate) EL equations. We can write the
EL equations as (exercise)

~̈x+ (M−1K)~x = 0,

where M−1 exists because M is positive definite (exercise). Suppose we can find an
eigenvector ~a of M−1K with eigenvalue ω2. (For now, we allow ω to be complex.) Then
it is easy to see that we will get a solution the form

x = ~a cos(ωt+ β).

Thus, provided ω2 > 0, i.e., ω is real and non-vanishing, some combination of the displace-
ments of the system (determined by the eigenvector) is behaving as a harmonic oscillator
with frequency ω. If we can find enough eigenvectors, we will be able to build the general
solution to the EL equations by superposition. Because the general solution should involve

* Note that a symmetric, real matrix always admits complete set of eigenvectors with real
eigenvalues.
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2n integration constants — corresponding to initial positions and initial velocities, we will
need n independent solutions of the above form (exercise), i.e., n linearly independent
eigenvectors, to get the general solution in this manner.

Our goal, then, is to determine the eigenvalues ω2 and the eigenvectors ~a. We will
write our eigenvalue equation in the equivalent form (exercise):

(K − ω2M)~a = 0.

Thus ~a is an eigenvector of the matrix (K − ω2M) with eigenvalue zero. You will recall
the basic result from linear algebra that the square matrix K − ω2M has an eigenvector
with eigenvalue zero if and only if (exercise)

det(K − ω2M) = 0.

This is the characteristic equation for ω; it is a polynomial equation for ω of order 2n.
Thus ω, called the characteristic frequency, arises as a root of a polynomial of order 2n.

In general there are 2n roots of the characteristic equation. But notice that if ω
is a solution, then so is −ω since they both yield the same ω2. Since it is ω2 which
determines the eigenvector, we see that changing the sign of ω does not give a new solution
(linearly independent eigenvector). Thus, without loss of generality, we can assume that
ω > 0. Thus we get n characteristic frequencies. At this point, as far as we know,
these frequencies may be non-vanishing and real, or zero, or imaginary. The real solutions
correspond to stable directions in configuration space. The imaginary solutions correspond
to directions in configuration space relative to which the equilibrium is unstable. The
vanishing frequencies correspond to directions in configuration space relative to which we
have neutral equilibrium. Corresponding to each of these roots is an eigenvector ~a and
hence a solution ~x to the EL equations.

It is not hard to see that if the potential energy quadratic form is positive definite then
ω2 > 0, so that there are n real, positive characteristic frequencies. To see this, simply
note that for any displacement ~x solving the equations of motion we have

ω2M(~x) = K(~x).

Because both quadratic forms are positive definite, M(~x) > 0 and K(~x) > 0, it follows
that

ω2 > 0,

as desired.

Physically speaking, the existence of n positive roots for ω stems from our assumption
that q0 is a point of stable equilibrium, which mathematically means K(~x) is positive
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definite. If K(~x) could be negative or zero, allowing for complex or vanishing frequencies,
this would lead to exponential or linear (rather than oscillatory) solutions. Henceforth we
assume we have stable equilibrium and just focus on the sinusoidal solutions. You should
have no problem adapting our discussion to the other cases (and we will have an example
of neutral equilibrium in a little while)

Once we have a characteristic frequency ω, we can reconstruct the corresponding ai

by solving the equation (K − ω2M)~a = 0. The solution is guaranteed to exist (because
ω solves the characteristic equation). In this way we have, in fact, found an eigenvector
(~a) of M−1K with eigenvalue ω2 (exercise). It is, in general, possible to find n roots of
the characteristic equation along with n orthogonal — and hence linearly independent —
eigenvectors (more on this shortly). Each of the (real) solutions obtained through this
procedure evolves in time harmonically at the characteristic frequency; these solutions
are called normal modes. Let us denote the characteristic frequencies by ωα and the
corresponding normalized eigenvectors by ~aα = {aiα}, α = 1, 2, . . . , n. The general solution
to the EL equations is then a superposition of the normal modes:

xk(t) =
∑
α

cαa
k
α cos(ωαt+ βα),

where cα and βα are constants (of integration) determined by initial conditions.

Normal Modes - The Recipe

Let us summarize the construction of the normal modes of vibration described by the
Lagrangian, which approximates the dynamics of a system near equilibrium:

L =
1
2
Mij ẋ

iẋj − 1
2
Kijx

ixj , i, j = 1, . . . , n.

First we solve the characteristic equation

det(ω2M −K) = 0

for the characteristic frequencies ωα, α = 1, . . . , n.

We then solve the linear equations

(ω2
αM −K)~aα = 0

for the corresponding vectors ~aα, α = 1, . . . , n. The normal modes of vibration are*

~Θα(t) = ~aα cos(ωαt+ βα).

* Here we assume ωα 6= 0. If a characteristic frequency vanishes the corresponding normal
mode is of the form ~Θ = (c+ dt)~a, where c and d are constants.
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The general motion of the system in the vicinity of stable equilibrium (in the harmonic
approximation) is a superposition of the normal modes. The superposition goes over the
amplitudes and phases of each oscillator. These coefficients are determined by initial
conditions. We have

~x(t) =
n∑

α=1
Cα~Θα(t).

An Elementary Example

As a very simple example of finding normal modes and characteristic frequencies, let
us consider a system described by the Lagrangian

L =
1
2
m(ẋ2 + ẏ2)− 1

2
mω2

0(x2 + y2)− 1
2
mα2(x− y)2.

This system can be viewed as two identical one-dimensional harmonic oscillators (natural
frequency ω0 ) with a coupling by a harmonic force (natural frequency α) (exercise).

The matrices M and K are given by (good exercise!)

Mij = mδij ,

and
Kxx = Kyy = m(ω2

0 + α2), Kxy = Kyx = −mα2.

We now have

K − ω2M = m

(
α2 + ω2

0 − ω
2 −α2

−α2 α2 + ω2
0 − ω

2

)
.

The characteristic equation is (exercise)

0 = det(K − ω2M) = m2
[
(α2 + ω2

0 − ω
2)2 − α4

]
.

The characteristic frequencies are then given by (exercise)

ω1 = ω0, ω2 =
√
ω2

0 + 2α2.

The corresponding normalized normal modes are determined by

~a1 =
1√
2

(
1
1

)
, ~a2 =

1√
2

(
1
−1

)
.

We have

Θ1 =
1√
2

(
1
1

)
cos(ω0t+ β1), Θ1 =

1√
2

(
1
−1

)
cos(

√
ω2

0 + 2α2t+ β2).
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Evidently, the oscillation at frequency ω0 corresponds to the two masses moving ex-
actly in phase, so the coupling does not come into play, while the oscillation at frequency√
ω2

0 + 2α2 has the two masses moving exactly out of phase.

The general motion of the system is a superposition of these two normal modes. We
can write the general motion of the system in vector form as

~x(t) = C1~a1 cos(ω1t+ β1) + C2~a2 cos(ω2t+ β2),

or, more explicitly,

x(t) =
1√
2

(
C1 cos(ω1t+ β1) + C2 cos(ω2t+ β2)

)
y(t) =

1√
2

(
C1 cos(ω1t+ β1)− C2 cos(ω2t+ β2)

)
.

Here (C1, C2, β1, β2) are real constants which are determined by initial conditions. Despite
the fact that the motion is very regular, i.e., it is the superposition of harmonic oscillations,
the appearance of the motion can be quite complicated.

Example: Double Pendulum

Let us return to the coplanar double pendulum. The Lagrangian is

L =
1
2

(m1+m2)l21θ̇
2
1+

1
2
m2l

2
2θ̇

2
2+m2l1l2 cos(θ1−θ2)θ̇1θ̇2+(m1+m2)gl1 cos θ1+m2gl2 cos θ2.

Recall that m1 has a fixed point of support, while m2 is supported at the location of m1.
Stable equilibrium occurs at θ1 = 0 = θ2. We expand in Taylor series about equilibrium
to get the approximate Lagrangian:

L =
1
2

(m1 +m2)l21θ̇
2
1 +

1
2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 −

1
2

(m1 +m2)gl1θ2
1 −

1
2
m2gl2θ

2
2.

Note that the coupling between degrees of freedom occurs through the kinetic terms. The
characteristic equation is (exercise)

0 = det
(

(ω2l21 − gl1)(m1 +m2) ω2m2l1l2
ω2m2l1l2 (ω2l22 − gl2)m2

)
.

The roots are (exercise)

ω2
± =

g

2m1l1l2

{
(m1 +m2)(l1 + l2)±

√
(m1 +m2)

[
(m1 +m2)(l1 + l2)2 − 4m1l1l2

]}
.

To carry on, let us consider a special case. Suppose the two pendula are identical: m1 =
m2 = m, l1 = l2 = l. Then the characteristic frequencies become

ω2
± =

g

l
(2±

√
2).
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Note that all dependence upon the mass drops out. In this case the normal modes are
determined by

a± = C

(
1
∓
√

2

)
.

The normal mode Θ+ has both masses having velocities out of phase; the normal mode
Θ− has the velocities in phase.

Example: Linear triatomic molecule

As another application of our theory let us consider the motion near equilibrium of a
linear triatomic molecule. By this we mean that we have two atoms of mass m located
symmetrically on either side of an atom of mass M . Let all three atoms lie on a line.
For simplicity we only consider longitudinal motion, i.e., motion along the extent of the
molecule. We assume that, near equilibrium, the restoring force on the atoms is −kx, where
x is the displacement of an atom from equilibrium. In detail, let x1 and x2 denote the
longitudinal displacements of each m from equilibrium, and let X denote the displacement
of M from equilibrium. The potential energy is approximated by (exercise)

V =
k

2

[
(X − x1)2 + (X − x2)2

]
.

The kinetic energy is simply

T =
1
2
m(ẋ2

1 + ẋ2
2) +

1
2
MẊ2.

Ordering the coordinates on the configuration space as (x1, x2, X), the matrices of
interest are (exercise)

M =

(
m 0 0
0 m 0
0 0 M

)
,

K =

(
k 0 −k
0 k −k
−k −k 2k

)
.

The characteristic equation is (exercise)

ω2(k − ω2m)[k(M + 2m)− ω2Mm] = 0.

The solutions are (exercise)

ω1 = 0 (!!!), ω2 =

√
k

m
, ω3 =

√
k

m

(
M + 2m
M

)
.
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The appearance of a zero frequency mode is, at first, a little disconcerting, but simply
reflects the possible motion in which all three masses move with a uniform translation (see
below). The other two modes represent oscillations near equilibrium. To see all this, we
need to compute the normal modes. We get (exercise)

a1 = N1

(
1
1
1

)
, a2 = N2

(
1
−1
0

)
, a3 = N3

( 1
1
−2m
M

)
,

where the N ’s are normalization constants. The motion of mode 1 is rigid motion at
constant velocity. To see this we simply note that

x1 = x2 = X = at+ b

solves the equations of motion and with zero frequency (exercise). Note that a spatial
translation of the system is a symmetry of the Lagrangian, so the total (center of mass)
momentum is conserved. If desired, we can work in the rest frame of the center of mass; this
reduction eliminates the center of mass single degree of freedom and leaves two oscillatory
degrees of freedom. The motion of mode 2 has the central atom at rest and the two
endpoint atoms oscillating 180 degrees out of phase with the same amplitude. The third
mode has the endpoint atoms in phase, with the same amplitude while the center atom
moves 180 degrees out of phase with them and with a different amplitude. These latter
two modes keep the center of mass at rest.

Finally, let us briefly and qualitatively consider the general, non-longitudinal motion
of the molecule. Of course, if we allow for vibrations perpendicular to the line defined of
the molecule we have more degrees of freedom (namely, 9) to consider. While the explicit
computations are more lengthy, nothing conceptually new arises. There will be a number
of zero frequency modes corresponding to rigid motions (translations and rotations) of the
molecule. The remaining modes will be truly vibrational. Of the 9 degrees of freedom and
the 9 corresponding modes, 5 will be of the zero-frequency type (exercise). Naively, there
are 3 translations and 3 rotations, but the linear nature of the molecule, and its modeling
via point masses, means that rotations about the molecular axis are not motions of the
system. Thus there are only 5 zero frequency modes: 3 translations + 2 rotations. This
leaves 4 vibrational modes. Two of these modes–the longitudinal modes–we have already
studied. The other two modes are transverse to the axis of the molecule. If we think of
this axis as the x-axis, then the transverse vibrations come from displacements in the y
and z directions. Clearly there is nothing to physically distinguish y from z, so we expect
that the frequencies for the two transverse normal modes will be degenerate. Indeed, there
is nothing to pick out which orthogonal directions to the molecule should be y and z. The
system exhibits a symmetry under rotations about the molecule axis. Thus the normal
modes for transverse vibrations will be along any two perpendicular directions each of
which is perpendicular to the molecule axis.
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The rigid motions of the molecule, which give rise to the zero frequency modes, cor-
respond to symmetries and conservation laws. Since the potential energy is changed only
by a relative motion of the atoms, it clearly will exhibit a symmetry with respect to any
transformation that leaves the relative position of the atoms unchanged, i.e., rotations
and translations of the molecule as a whole. The kinetic energy is, of course, invariant
under such transformations (exercise). Thus the Lagrangian is invariant under the rigid
rotations and translations of the molecule. The corresponding conservation laws are 5 in
number (3 translations and 2 rotations–exercise); they are the 3 components of the cen-
ter of mass momentum (no external forces) and 2 components of angular momentum (no
external torques).
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