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Relevant Sections in Text: §5.1 – 5.6, §11.1 – 11.3

Motion near equilibrium – 1 degree of freedom

One of the most important situations in physics is motion near equilibrium. Motion

near stable equilibrium can always be decomposed into (the superposition of) the motion

of harmonic oscillators. This “harmonic approximation” is used to understand such diverse

phenomena as a pendulum in a clock, a bridge swaying in the breeze, phonons in solids,

photons in quantum electrodynamics, and the mass of the Higgs particle. We will now

touch on some of the key ideas.

You will recall that a Newtonian particle has an equilibrium point ~r0 at locations where

the force on the particle vanishes ~F (~r0) = 0. Indeed, at such a location the acceleration of

the particle vanishes. Hence, if the particle is located there with vanishing velocity, it will

stay there. In terms of a potential energy functions V (~r), an equilibrium point is a critical

point of the potential energy:
~∇V (~r0) = 0.

So, let us begin by considering the motion of a one-dimensional system near a critical

point of the potential energy. While only the simplest systems can be reduced to one

degree of freedom, this case is still particularly important because – as we shall soon see –

multi-dimensional systems (in the vicinity of stable equilibrium) can be reduced to multiple

copies of the one dimensional case.

We assume the Lagrangian is of the form:

L =
1

2
a(q)q̇2 − V (q).

Note we assume (for now) that the system is closed, i.e., energy is conserved. This as-

sumption is built into the Lagrangian — there is no explicit time dependence. Let q0 be

a critical point of the potential, so that V ′(q0) = 0. Let us approximate the motion by

assuming that x := q − q0 is “small”. We expand the Lagrangian in a Taylor series in x,

keeping only the first non-trivial terms. Using

a(q) ≈ a(q0) + . . . , q̇ = ẋ, V (q) ≈ V (q0) + V ′(q0)x+
1

2
V ′′(q0)x2 + . . .

we get

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2 + . . . .
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Here we have set m = a(q0) and k = V ′′(q0). Of course, the kinetic energy must be

positive, so that m > 0. Note that we also have dropped the irrelevant constant V (q0). If

desired we can adjust the reference point of potential energy so that this constant is zero.

The EL equations are (in the domain of validity of the approximation)

mẍ = −kx.

This equation is easily integrated:

x = Re(Aeiωt), when k 6= 0.

x = at+ b, if k = 0,

where ω = ±
√

k
m and A is a complex constant encoding the two real integration constants,

which can be fixed by initial conditions.

Taking the real part of the exponential expresses the solution in terms of a cosine:

x = α cos(ωt+ β),

where

A = αeiβ , α, β ∈ R.

An alternative form of the exponential solution corresponds to using a sine:

x = Im(Aeiωt), when k 6= 0.

As a good exercise you should try relating all of these equivalent versions of the solution.

If k > 0, then ω is a real number and q0 is a point of stable equilibrium. In this case the

motion is harmonic. In particular, if x is small initially and the initial velocity is sufficiently

small, then x(t) remains small (exercise), so that our approximation is self-consistent.

On the other hand, if k ≤ 0, then the motion of the particle need not maintain our

approximation of small x; our approximation is not self-consistent and must be abandoned

after a very short time. Of course, the case k < 0 (imaginary ω) corresponds to unstable

equilibrium, for which it is possible for a small perturbation to lead to motion to a location

far away from equilibrium. If k = 0, then the critical point q0 is not a maximum or

minimum but is a saddle point (“neutral equilibrium”); our approximation again becomes

invalid, although the time scale for this is larger than in the case of unstable equilibrium.

Thus in a neighborhood of a point of stable equilibrium it is consistent to make the

harmonic approximation to the potential and kinetic energies. In the harmonic approxi-

mation the motion of the system is mathematically the same as that of a simple harmonic
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oscillator. If the initial displacement and velocity are small enough, the motion will be

well-approximated by harmonic motion near equilibrium.

Examples

A very familiar example of all of this is the planar pendulum of mass m and length l

for which q = θ is the deflection from a vertical position, θ = 0, which is an equilibrium

position. (Can you think of the other equilibrium position?) We have

V (θ) = mgl(1− cos θ),

and

a(θ) =
1

2
ml2.

The Lagrangian is

L =
1

2
ml2θ̇2 −mgl(1− cos θ)

Supposing θ << 1 (in radians!), we can use the Taylor series approximation (about θ = 0)

to the cosine function

cos(θ) ≈ 1− 1

2
θ2.

Thus, in the harmonic approximation near equilibrium at θ = 0, is (exercise)

L =
1

2
ml2θ̇2 − mgl

2
θ2,

so that the harmonic motion has “mass” ml2 and angular frequency” ω =
√

g
l . (Exercise:

What motion do we get near θ = π?) Notice that the “spring constant” is k = mgl which

is indeed obtained from the second derivative of the potential at the equilibrium point.

As another example, consider a mass m which is constrained to move on a straight

line. The mass is bound to a fixed point by harmonic force with potential energy V =
1
2K(r − R)2, where K is a constant, r is the distance of the particle to the fixed point.

The distance from the point to the line is l > R. A mechanical model of this system is a

mass sliding on a straight track; the mass being connected to a fixed point by a spring.

Our goal is to find the stable equilibrium position(s) and compute the frequency of small

oscillations about the equilibrium. Evidently, r2 = x2 + l2, where x is the position of the

particle along the given line, with x = 0 the location at distance l from the center of force.

Using x as the generalized coordinate, the Lagrangian for this system is (exercise)

L =
1

2
mẋ2 − 1

2
K(
√
x2 + l2 −R)2.

You can check that x = 0 is the only point of stable equilibrium. (As an exercise you can

check that the point x = 0 is a point of unstable equilibrium if we assume R ≥ l.) You

3



Motion near equilibrium - Small Oscillations

can expand the potential to second order – or just evaluate the second derivative of the

potential at the equilibrium point – to find that (exercise)

k =
K(l −R)

l
,

so that

ω =

√
K(l −R)

lm
.

Note that K(l − R) is the force needed to move a particle from r = R to the point r = l

(exercise) in the presence of the potential V .

Example

We return to our example of a plane pendulum of length l with horizontally moving

point of support. The mass m1 (the point of support) has position x, and the angular

deflection of the pendulum (mass m2) is denoted by φ. The kinetic energy is

T =
1

2
(m1 +m2)ẋ2 +

1

2
m2(l2φ̇2 + 2lẋφ̇ cosφ),

and the potential energy is

V = −m2gl cosφ.

We have already seen that we can use conservation of the momentum conjugate to x

to effect a Lagrangian reduction which eliminates the x degree of freedom. In detail, the

conservation law we need is

P = (m1 +m2)ẋ+m2lφ̇ cosφ = constant.

This conservation law is just the conservation of the x component of the center of mass of

the system (exercise).

Let us compute the frequency of small oscillations of the pendulum in the reference

frame in which P = 0, so that (exercise)

(m1 +m2)x+m2l sinφ = constant.

In this reference frame, which is the rest frame of the x component of the center of mass,

the reduced kinetic energy is (exercise)

T =
1

2
m2l

2φ̇2
(

1− m2

m1 +m2
cos2 φ

)
,

and the reduced potential energy is (exercise)

V = −m2gl cosφ.
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Clearly φ = 0 is an equilibrium point (exercise). Expanding in powers of φ we get, in the

harmonic approximation,

T ≈ 1

2

m1m2l
2

m1 +m2
φ̇2,

V ≈ 1

2
m2glφ

2.

It is now straightforward to see that the frequency of small oscillations is (exercise)

ω =

√
g(m1 +m2)

m1l
.

Of course, in a generic inertial reference frame the motion of the system in the harmonic

approximation is small oscillations at the above frequency superimposed with a uniform

translation of the center of mass along the x direction.

As a sanity check, let us consider the limit in which m2
m1

<< 1, i.e., the mass at the

point of support is becoming large. Physically, we expect that the point of support moves

with a uniform translation along x. In the rest frame of the point of support (which is now

the approximate center of mass) we have a traditional plane pendulum problem. In this

limit we get (exercise)

ω ≈
√
g

l
,

as expected.

Example: A toy model for the Higgs particle

Consider a particle moving in 1 dimension under the influence of a potential energy

function:

V =
1

2
αx2 +

1

4
βx4.

If both α and β are positive this is an “anharmonic oscillator”. For small displacements

from equilibrium (at x = 0) this acts like a harmonic oscillator with “spring constant”

α. Let us consider what happens when α = −k < 0 and β > 0. The potential has a

“double well” shape, symmetric under reflection about x = 0, which you can easily verify

by graphing it. There are now 3 equilibrium points, which are obtained via

0 = V ′(x) = −kx+ βx3, =⇒ x = 0,±

√
k

β
.

Since

V ′′(x) = 3βx2 − k,

5



Motion near equilibrium - Small Oscillations

you can check that the equilibrium at x = 0 is unstable, while the equilibria at x = ±
√

k
β

are stable. Indeed, since

V ′′(±

√
k

β
) = 2k,

We see that motion near x = ±
√

k
β is harmonic with frequency

√
2k
m .

The Higgs field of the standard model of particle physics experiences a potential energy

function analogous to that shown above. In the field theoretic picture, the “frequency”

of small oscillations corresponds to the mass of the Higgs particle – which is the simplest

excited state of the Higgs field. Notice that our particle has a potential (and Lagrangian)

which is invariant under the transformation x→ −x. There is a correspondingly symmetric

solution of the equations of motion, namely, x(t) = 0. But, because this equilibrium

solution is unstable, the behavior of the particle near equilibrium is oscillatory about

x = ±
√

k
β with frequency

√
2k
m . Analogous statements can be made about the Higgs field.

Roughly speaking, this is how the Higgs (and all fields it interacts with) acquire mass.

This situation is often characterized as “spontaneous symmetry breaking”.

Damped Oscillations

Usually, motion near equilibrium of a realistic system includes dissipation of energy

into an environment. This is why oscillating systems in the real world have a decreasing

amplitude in time and eventually come to rest. The mathematical description of this

damping can become rather intricate depending upon the causes of the energy dissipation.

A simple and important case is the damping caused by motion in a fluid at sufficiently

small speeds. We will consider this case, where the dissipation is proportional to velocity.

There are other possibilities, of course.

The equation of motion is

mẍ+ bẋ+ kx = 0,

with b > 0 controlling the dissipation. You can see that the effect of dissipation is always

a deceleration. A simple example where such dissipation occurs is motion of an oscillating

mass in a fluid. Another interesting example is in an LRC electrical circuit.* If q(t) is the

charge on the capacitor at time t, we have (using definitions of inductance, resistance, and

capacitance, and then Kirchoff’s rule)

Lq̈ +Rq̇ +
1

C
q = 0.

You can see the resistance is the source of the energy dissipation. This is the usual I2R

power dissipation.

* L is inductance. C is capacitance. R is resistance.
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Let us return to the general form of the damped oscillator equation. If we divide the

equation of motion for x(t) by m, we have

ẍ+ 2βẋ+ ω2x = 0,

where β = b
2m . This is a linear ODE with constant coefficients. A standard approach to

solving such an equation is to try to find 2 independent solutions of the form

x(t) = Dert,

where D and r are constants, and then forming the general solution by superposition.*

Substituting this into the differential equation is straightforward and gives an equation for

r:

r2 + 2βr + ω2 = 0,

which is easy to solve using the quadratic formula:

r± = −β ±
√
β2 − ω2.

Our two independent solutions are now

x(t) = Der±t,

so that the general solution is

x(t) = D1e
−βt+

√
β2−ω2t +D2e

−βt−
√
β2−ω2t.

The constants D1 and D2 are determined by – and determine – initial position and velocity.

Let us consider a few special cases.

If β = 0, the square roots become pure imaginary,√
−ω2 = ±iω,

and we see harmonic motion at frequency ω. We have already considered this case, of

course.

If |β| < |ω|, the square root is again imaginary and we get damped, oscillatory mo-

tion. This is the typical behavior of oscillatory systems in the “real world”, where some

dissipation occurs. Think of a pendulum in air. This case is called “under-damped”.

If |β| > |ω| the square root is a real number and we get purely damped motion.

Here the dissipation dominates the restoring force and the displacement just “relaxes” to

* The general solution of a linear differential equation is a solution with enough free param-
eters to give all possible solutions of the equation.
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equilibrium without any oscillations at all. Think of a pendulum in water. This case is

called “over-damped”.

If |β| = |ω| then we don’t get two independent solutions to the equations by the

exponential formula. The missing solution in this case is a constant times te−βt so that

the general solution is of the form

x(t) = e−βt (D1 +D2t) .

This case is called “critically damped”.

You will explore this all a bit more in the homework.

Forced Oscillations

A typical scenario in which small oscillations are relevant is where one has a system in

stable equilibrium which is subjected to an external force ~F which moves the system from

equilibrium. (A very important real-world example: a child being pushed on a swing.) We

allow this force to be time dependent. This introduces an additional potential energy term

V1 to the quadratically approximated Lagrangian given by

V1 = −~F (t) · ~x.

Sticking with one-dimensional motion, we thus consider the Lagrangian

L =
1

2
mẋ2 − 1

2
kx2 + xF (t),

where k > 0. The equations of motion are that of a harmonic oscillator subjected to an

external, time varying force F (t) (exercise):

ẍ+ ω2x =
F (t)

m
.

Of course, we must assume that F remains suitably small and varies in time so that the

solutions do not violate the approximation needed for their validity.

This inhomogeneous differential equation can be directly integrated as follows. Define

ξ(t) = ẋ(t) + iωx(t).

Note that this means

ẋ = <(ξ), x =
1

ω
=(ξ).

In terms of the complex variable ξ the equation of motion takes the form (exercise)

ξ̇ − iωξ =
F (t)

m
.
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You can easily see that, when F = 0, the solution is of the form Aeiωt, where A is a

constant. Using x = 1
ω=(ξ) we recover a version of simple harmonic motion. We try a

solution of the form

ξ(t) = A(t)eiωt.

The idea here is that the time dependence of A only arises via the force, with the harmonic

motion already being taken into account. Plugging into the ODE, we find that A satisfies

Ȧ = e−iωt
F (t)

m
,

which has solution (exercise)

A(t) =

∫
dt

1

m
F (t)e−iωt + constant.

We see that

ξ(t) = eiωt
(∫

dt
1

m
F (t)e−iωt + constant

)
.

Putting this all together, we see that the general solution of the forced oscillator equation

is (exercise)

x(t) =
1

ω
=(ξ(t))

=
1

ω
=
[
eiωt(B +

∫
1

m
F (t)e−iωt dt)

]
,

where B is an arbitrary complex constant.

Notice that the solution for x(t) is the sum of two terms:

x(t) = xH(t) + xI(t),

where

xH(t) = =(
B

ω
eiωt),

and

xI(t) =
1

ω
=
[
eiωt

∫
1

m
F (t)e−iωt dt

]
You will recognize xH(t) as the general solution to the un-forced harmonic oscillator equa-

tion. You can easily check that xI(t) is a solution to the forced harmonic oscillator equation.

What we have here is a very general kind of result, valid when the equation being solved

is linear, inhomogeneous. The general solution of a linear, inhomogeneous equation is the

sum of any particular solution and the general solution of the associated homogeneous

equation.

As an example of all this, suppose that

F (t) = f cos(γt),
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where f is a constant. Here we have a sinusoidal force with period 2π
γ . Then, provided

γ2 6= ω2, the general solution is of the form (exercise)

x(t) = a cos(ωt+ α) +
f

m(ω2 − γ2)
cos(γt),

where a and α are real constants. These constants are fixed by initial conditions, as

usual. We see that in this case the motion is a superposition of two oscillations at the

two frequencies ω and γ inherent in the problem. The relative importance of the forced

oscillation component depends, of course, on the the size of f , but also on the relative

magnitudes of ω and γ.

When ω → γ the forced oscillation amplitude diverges and our form of the solution

given above becomes invalid; this situation is called resonance. To get the correct solution

in this case we set γ = ω in our integral expression or the general solution. We then get a

solution of the form (exercise)

x(t) = a cos(ωt+ α) +
f

2mω
t sinωt,

where, again, a and α are constants. Note the linear growth in t, which eventually destroys

the harmonic approximation.

A simple example of resonance is when you push someone on a swing. If you time your

pushes just right you can increase the amplitude of the swing.

Some detailed analysis

We can get a useful picture of the behavior of the system near resonance by an ap-

proximation scheme. Let

γ = ω + ε,

where ε << ω. Write the general solution for x(t) (off resonance) in the complex form

(exercise):

ξ(t) ≈ (A+Beiεt)eiωt.

Over one period, 2π
ω , the amplitude C = |A+Beiεt| changes very little. Thus the motion

is approximately that of free oscillation with a slowly varying amplitude. In particular,

the amplitude is of the form (exercise)

C =
√
a2 + b2 + 2ab cos(εt+ φ),

where A = aeiα, B = beiβ , and φ = β − α. Thus the amplitude varies (slowly) between

the values |a+ b| and |a− b|. The oscillatory behavior is said to exhibit “beats”.
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Typically, a general force F (t) can be Fourier analyzed into sinusoidal components.

Likewise, we can Fourier analyze the solution x(t). We can view the above example as

illustrating the behavior of a typical Fourier component. The general motion of the system

is then a superposition of motions such as given above (exercise).

Finally, let us note that since the Lagrangian for a system executing forced oscillations

is explicitly time dependent (provided dF
dt 6= 0), there will be no conservation of energy

for the oscillator. This should not surprise you, since the oscillator is clearly exchanging

energy with its environment. We can compute the energy transferred during a time interval

(t1, t2) by noting that the oscillator energy can be written as

E =
1

2
m(ẋ2 + ω2x2) =

1

2
m|ξ|2,

and then using our explicit formula for ξ(t),

ξ = eiωt(B +

∫ t

0

1

m
F (t)e−iωt dt)

to compute the energy at time t. For example, let us suppose that the system is at

equilibrium before t = 0, a force acts for a period of time after t = 0 after which the

force is zero again. Then B = 0 and the change in the oscillator energy can be written as

(exercise)

∆E =
1

2m

∣∣∣∣∫ ∞−∞ F (t)e−iωt dt

∣∣∣∣2 .
Thus, the energy transfer is controlled by the absolute value of the Fourier component of

the force with frequency ω. If the time during which the force acts is small compared to
1
ω , then eiωt is approximately constant in the integral, and hence

∆E ≈ 1

2m

∣∣∣∣∫ ∞−∞ F (t) dt

∣∣∣∣2 .
Here the change in energy is controlled solely by the impulse imparted by the force since

the time scale is so short that no appreciable change in potential energy occurs while the

force acts. In the limit where

F (t) = fδ(t− t0),

this approximation becomes exact (exercise).

Finally, we remark that one can treat the forced oscillator with damping included in a

similar way to what was done above. See your text for details.

More than one degree of freedom

Here we consider a couple of important and illustrative examples of oscillations with

more than one degree of freedom. In general if

V = V (q1, q2, . . . , qn)
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is the potential energy function for a Newtonian system with n degrees of freedom. Then

equilibrium q0 is defined by

∂V

∂qi
(q0) = 0, i = 1, 2, . . . , n.

and the small oscillation approximation involves the Taylor series of the potential energy

to second order. Ignoring the zeroth order (constant) term, the first order term vanishes,

and we have near equilibrium

V ≈ 1

2

n∑
i,j=1

∂2V

∂qi∂qj
(q0)xixj , xi = qi − qi0.

So, in this approximation the potential energy becomes a second order polynomial in the

displacement from equilibrium. We will briefly explore a couple of standard situations

which arise for this approximation.

Isotropic and anisotropic oscillators

We consider a system with two degrees of freedom (x, y) whose Lagrangian near equi-

librium takes the form

L =
1

2
m(ẋ2 + ẏ2)− 1

2
kxx

2 − 1

2
kyy

2, kx, ky constants

This corresponds to a matrix of second derivatives of the form

∂2V

∂qi∂qj
(q0) =

(
kx 0
0 ky

)
.

This system is known as a two-dimensional* anisotropic oscillator. An example where such

a Lagrangian would be used is when studying a marble rolling near the bottom of a bowl

which is sharply curved in one direction and less sharply curved in an orthogonal direction.

Another example of such a Lagrangian (when generalized to 3-d) arises in condensed matter

physics when studying the motion of an atom when displaced from equilibrium in a crystal

which is not isotropic.

The equations of motion for this Lagrangian are easily seen to be just two, decoupled

harmonic oscillator equations:

mẍ+ kxx = 0, mÿ + kyy = 0.

The solutions are

x(t) = A cos(ωxt+ α), y(t) = B cos(ωyt+ β),

* I think you can easily generalize everything I will do here to more than two degrees of
freedom.
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where

ωx =

√
kx
m
, ωy =

√
ky
m

and A, B, α, β are constants which can be determined by initial conditions. The motion

in each direction is simple (harmonic), but the combined motion can be quite complex. To

be sure, with initial position and velocity in one of the directions set to zero, the motion

is just harmonic oscillations in the other direction. But, in the generic case, where ωx and

ωy are two random constants and the initial conditions are not fine tuned in any way, the

particle wanders in the plane with a motion which never repeats itself! It can be shown

that if ωx and ωy are rationally related – ωx/ωy is a rational number – then the motion

is periodic. If ωx = ωy then we speak of an isotropic oscillator. Now the motion is much

more regular. Indeed you can check that, with ωx = ωy the motion is generically an ellipse.

See your text for details. The isotropic oscillator provides an example of a rotationally

invariant central force; we shall revisit the isotropic oscillator when we study the 2-body

central force problem.

Coupled oscillators

A very important result is illustrated in the next example: Motion near (stable) equi-

librium can always be expressed as n decoupled oscilations, as in the last section, where

n is the number of degrees of freedom of the system. The variables that effect this de-

coupling represent the normal modes of vibration. The associated frequencies are called

characteristic frequencies.

Let us consider a Lagrangian of the form

L =
1

2
m(ẋ2 + ẏ2)− 1

2
mω2

0(x2 + y2)− 1

2
mα2(x− y)2

=
1

2
m
[
ẋ2 + ẏ2 − (ω2

0 + α2)(x2 + y2) + 2α2xy
]

This system can be viewed as two identical one-dimensional harmonic oscillators (natural

frequency ω0 ) with a coupling by a harmonic force (natural frequency α) (exercise). So,

a toy model for this system could be two pendulums connected by a spring, or two masses

each connected by identical springs to two walls and inter-connected by a different spring.

In any case, this is the Lagrangian for motion near equilibrium whenever the potential

energy is such that:

∂2V

∂qi∂qj
(q0) =

(
A B
B A

)
=

(
m(ω2

0 + α2) −mα2

−mα2 m(ω2
0 + α2)

)
.

The equations of motion can be written as:

ẍ+ (ω2
0 + α2)x− α2y = 0, ÿ + (ω2

0 + α2)y − α2x = 0.
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As you can see, the “spring” characterized by the frequency α couples the two one-

dimensional oscillators. How to solve these coupled, linear, homogeneous, second-order,

constant coefficent, ordinary differential equations? A simple, linear change of coordinates

will do the trick. Set

q1 = x+ y, q2 = x− y.

Add and subtract the two equations of motion to get

q̈1 + ω2
0q1 = 0,

and

q̈2 + (ω2
0 + 2α2)q2 = 0.

The change of variables has decoupled the two ODEs and, moreover, has yield two 1-d

harmonic oscillator equations!

So, in terms of the variables q1 and q2 the motion is mathematically that of an

anisotropic two-dimensional oscillator – two decoupled simple harmonic oscillations as

we treated in the previous subsection. We have the general solution

q1(t) = C1 cos(ω0t+ β1), q2(t) = C2 cos(
√
ω2

0 + 2α2t+ β2),

or

x(t) =
1√
2

(
C1 cos(ω1t+ β1) + C2 cos(ω2t+ β2)

)
y(t) =

1√
2

(
C1 cos(ω1t+ β1)− C2 cos(ω2t+ β2)

)
.

It can be shown that this type of result – the motion can be viewed as a combination of

independent harmonic oscillations — arises whenever one approximates motion near equi-

librium as we have done here, for any number of degrees of freedom! The harmonic motions

are called normal modes of vibration and the associated frequencies are the characteristic

frequencies.

Evidently, the normal mode at frequency ω0 corresponds to the two masses moving

exactly in phase, so the coupling does not come into play, while the oscillation at frequency√
ω2

0 + 2α2 has the two masses moving exactly out of phase. The general motion of the

system is a superposition of these two normal modes; the particular superposition which

occurs is determined by initial conditions. In particular, if we choose the initial conditions

just right we can have motion which is purely one or the other normal mode. For example,

normal mode q2 is excited by itself if one picks initial x and y to be equal and opposite

and with vanishing initial velocity. Can you see this? For generic initial conditions the

motion can be quite complicated as we discussed for the anisotropic oscillator.

It is worth re-deriving the normal modes and characteristic frequencies using some

linear algebra techniques.
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