Recap.

- 1. Acceleration due to gravity "g" near the earth's surface is **CONSTANT** (i.e., **NOT** varying with **TIME**) and has a value of 9.8 m/s².
- 2. An object in free fall will **INCREASE** its **VELOCITY UNIFORMLY** with time. (v = g, t)
- 3. The distance fallen in a unit of time will **INCREASE RAPIDLY** with time as the object drops. $(d = \frac{1}{2} g. t^2)$.
- 4. The **ACCELERATION** due to gravity is **NOT** dependent on the **MASS** or **SIZE** of the object!
- 5. "g" is **NOT** a "fundamental" constant!
 - But it does **NOT** vary much near the Earth's surface.

Upward Motion (against gravity)

- What happens when we throw a ball vertically upward? (i.e., how does the gravitational attraction affect the ball's motion?)
- We know from every day experience that "what goes up must come down" but we want to know:
 - How far up?
 - How fast it goes up?
 - When will it return?
- To make it move upwards we must first exert a **force** on the ball which will **accelerate** it to a **launch velocity** V_0
- Once it is launched the **primary force** acting on the ball is due to **gravity** (assuming no air resistance) which always produces a **downward acceleration** towards the center of the earth of ~10 m/s²
- This means that for every second the ball is in the air its velocity will **CHANGE** by ~10 m/s.

- The direction of the change in velocity is downward opposite to the ball's original velocity (i.e., it subtracts from it)

Example: Ball projected upward at a velocity of 20 m/s

Results:

- Ball took the same time (2 sec) to travel upward as it did to return downward to its original position.
- Velocity of ball on its return was of same size as original velocity but in opposite direction.
- The "turn around" point of the ball's motion occurred at 2 sec when its **velocity** was momentarily **ZERO**.
- However, the **acceleration** at this point (and throughout the motion) was still -10m/s² as "g" is **CONSTANT**. (remember acceleration is the **rate of change** of velocity and is not dependent on its size.)
- * The larger the initial velocity the higher the altitude and the longer the flight time.

Exp: "Hang time"

Near the top of the trajectory the **velocity** is **VERY LOW** and the ball **SPENDS MORE TIME** there than during the rest of flight!

Projectile Motion

Question:

What happens to a projectile's trajectory (path) when it is launched horizontally?

How does this trajectory happen?

Key: - resolve motion into its **HORIZONTAL** and **VERTICAL** components.

But we know V_G increases with time due to gravity acceleration!

equal distances horizontally in equal time (assuming NO air resistance).

Results:

- Projectile travels **HORIZONTALLY** at a **CONSTANT VELOCITY** but at the same time it experiences a **downward** gravitational **acceleration**.
- The downward gravitational component of velocity **INCREASES UNIFORMLY** with time. (in exactly the same way as a ball dropped vertically from a roof.)

Unexpected result:

- If **increase** the cannon ball's initial **velocity** it will travel **further** from ship. However, which one will hit the sea first?
- Intuitively we expect the ball that travels **furthest** to have the **longest** time of flight......

Answer = all hit sea at SAME TIME! WHY?

- Because they all experience the same vertical acceleration due to gravity, $g = -10 \text{m/s}^2$.
- In other words the vertical component of their velocities are equal at any given moment in time.
- This is true even for a cannon ball accidentally dropped over the side!
- This surprising result is due to the fact that the **vertical motion** depends only on gravity and is **independent** of horizontal motion.

Conclusion:

The horizontal distance traveled is therefore given by the time of flight (which is dictated by the vertical motion) and the initial velocity $V_{\mathbf{H}}$.

Thus, taller ships could therefore **fire further** but they were much more unstable!

Other Implications:

- If no account is taken of the pull of gravity on a projectile it will miss its target.
- -The magnitude of the "miss" will depend on the **distance** to the target and the **initial velocity** (i.e., time to target)!
- The longer the time the larger the error.

Result - Compensate -"aim high" to balance out gravitational effect.

- -Archers and sharp shooters need to be very skilled at the correction.
- Increasing velocity V_H significantly **reduces** this error.

General Result - Ballistics

- To project an object any significant distance it is necessary to launch it at an ANGLE θ to the horizon.
- This provides a controlled horizontal and vertical vector component.
- The V_H component will **remain unaltered** during flight (in practice air resistance will reduce it).
- The vertical component is highest initially and steadily reduces to zero at the highest point.
- At this **center point** of the trajectory the **velocity vector** is completely **horizontal**.
- The **trajectory is symmetrical** time to target equals **twice** time to maximum altitude.

Can we CONTROL the Trajectory?

- By altering the **initial velocity** or by changing the **launch angle-** we can dictate where object will land.
- A large range of trajectories are therefore possible.
- A faster projectile will reach the target sooner and will be less affected by "g". So the object can be launched at a fairly shallow angle (e.g. a bullet) (note: "flat" basket ball shots are more difficult to make as the ball "sees" a smaller opening.)
- By increasing the angle of the trajectory (i.e., lower V_H) the time of flight increases but not necessarily the range (e.g., if point gun vertically its range = 0..aagh!!)
- Longer time of flight introduces larger errors due to variations in any winds.

- V_H is much larger than V_Z vertical motion therefore limited and **time of flight short**.
- Large V_Z object travels much higher and stays aloft longer but does not travel far horizontally.
- Intermediate **angle of 45°** maximizes the horizontal and vertical components providing **maximum flight time** and hence **maximum distance** covered in that time.

Summary - Ballistics

- The **trajectory** of a projectile is described by a **symmetric curve** called a **parabola**.
 - The altitude and range of an object's trajectory depend on its initial launch speed and angle.
- For a projectile of launch angle " α " the initial velocity can be

broken down into its **VERTICAL** and **HORIZONTAL** velocity components.

- Throughout the flight the vertical cpnt. is subject to a constant downward gravitational acceleration which determines how long it will stay in the air.
- The horizontal component is constant during the flight (if no air resistance) and determines how far it will travel in that time.

In practice: - a range of launch angles are possible

