Recap.

- Velocity is a vector and represents a body's speed and direction.
- A **force** must act on a body to **change** its velocity (i.e. its speed, direction, or both).
- The force causes the body to accelerate, resulting in a change in its velocity.
- Acceleration is a vector and represents the rate of change of velocity with time.

Average acceleration =
$$\frac{\text{Change in velocity}}{\text{Time interval}} = \frac{V_2 - V_1}{t}$$

 $\vec{a} = \frac{\vec{D} \vec{V}}{t} m/s^2$

Instantaneous Acceleration:

- Rate of **change** of velocity at a given instant.
- ie. The average acceleration measured over a very short time interval.
- If acceleration changing fast we need to sample it very frequently.

Acceleration: Vector Direction

The direction of acceleration vector is given by the direction of the change in the velocity vector, \overrightarrow{DV} .

- Acceleration vector in **same direction** as velocity when velocity is **increasing**.

- When the velocity is **decreasing** the change in \overline{DV} is in the opposite direction to motion (ie. to slow car down)
- Acceleration vector is **opposite direction** when velocity is **decreasing** on is **negative** acceleration.

Example: Negative Acceleration

-Jet preparing to land

Initial velocity $V_1 = 200 \text{ km/hr} (=55.6 \text{ m/s})$

Final velocity $V_2=120 \text{ km/hr} (=33.3 \text{ m/s})$

Time interval t=5 sec

Acceleration:

$$\vec{a} = \frac{\vec{D}\vec{V}}{t} = \frac{\vec{V}_2 - \vec{V}_1}{t}$$

$$\vec{a} = \frac{33 \cdot 3 - 55 \cdot 6}{5} m/s^2$$

$$\vec{a} = -4 \cdot 46 m/s^2 toward runway$$

In general:

- Whenever the **velocity is changing** we say the object is **accelerating** (positive or negative).

Return to car on a bend

- Car moved at a **constant speed** but its direction continuously changed thus its **velocity was changing.**
- But we now know that **velocity changes** are produced by an **acceleration**.
- Thus when the car rounds the bend at a **constant speed** it is **accelerating!!**
- **Direction** of acceleration is given by $\overrightarrow{\Delta V}$ direction.

Result: the vector $\overline{\Delta V}$ acts towards the center of curvature of the bend!

Thus the acceleration is also directed towards the center of curvature.

- This is why the car does **NOT** change speed but you still feel a force on your body as you round the bend... (**change in direction**).
- **Force** is due to **friction** of tires on road enabling the car to change direction.

Example:

For a given speed the acceleration experienced (force) depends on the curvature of the bend.

Skiing - sudden turns create large accelerations & large associated forces!

Summary: Acceleration involves changes!

- Acceleration is the rate of change of velocity with time.
- Acceleration occurs whenever there is a velocity changes (ie. a change in its magnitude or direction).
- Acceleration vector has a direction corresponding to the change in the velocity vector (i.e., not necessarily in the direction of the instantaneous velocity vector).
- For circular motion the acceleration is always directed towards the center of curvature (i.e. perpendicular to velocity vector). (Chapter 5)

Graphs can help understand motion: Distance vs. Time

Key: slope tells you about the **instantaneous speed**.

Velocity vs. Time Plots

Constant velocity (no change with time)

Constant acceleration (\vec{v} increases uniformly with time) Slope gives value of acceleration.

Key: - Slope of velocity-time plots gives information on the **instantaneous acceleration.**

- Area under curve gives distance traveled.

Example:

Car at rest accelerates uniformly up to a constant speed of 50 m/sec

in 10 sec.

- Constant acceleration produces a linear increase (decrease) in velocity with time.

Acceleration does **NOT** change with time.

This is the **simplest form of acceleration** and occurs in nature whenever a **CONSTANT FORCE** is applied e.g. gravity!

Equations of Motion for Uniform (Constant) Acceleration a = constant

Produces a **linear** increase in velocity with time.

Or if initial velocity (V_0)

NOT zero:

$$V = V_0 + a t$$

Distance covered **grows very** rapidly with time. (as velocity is increasing with time).

$$D = 1/2 a t^2$$

Or if initial velocity **NOT** zero:

$$D = V_0 t + 1/2 a t^2$$

- Important formulas for calculating velocity and distance under constant (uniform) acceleration (i.e., constant force)
- Laws developed by Galileo (1638)!

Constant acceleration "a" occurs in nature whenever the force is constant e.g. gravity.