Electromagnetic (E-M) Waves

- •James Clerk **Maxwell** predicted the existence of **E-M waves** in 1865).
- •Unlike sound waves, E-M waves do **NOT** need a **medium** in which to **propagate** (i.e. they can **travel** through a **vacuum**).
- •We now know there is a **vast spectrum** of **E-M waves** extending from: Radio waves → Microwaves → Infra red Gamma rays ← X-rays ← Ultra violet ← Visible

What is an E-M Wave?

- E-M waves consist of alternating electric and magnetic fields generated by motion of charged particles (i.e. current).
- Motion is essential for magnetic field but electric field is present regardless.
- •E-M waves (e.g. radio waves) can be **generated** by an **antenna** connected to a **rapidly varying** AC **current source**.

(Note: E-M waves are generated by any time-varying current.)

• Rapidly varying current generates a constantly changing magnetic field (magnitude and direction).

- Time-varying electric and magnetic fields in E-M wave are perpendicular to each other and to the direction of propagation (E-M waves are transverse waves).
- E-M waves can propagate **vast** distances through space.
- As a result of Maxwell's prediction (1865) of E-M waves Hertz (1888) discovered radio waves.

Velocity of E-M Waves

• Maxwell **predicted** the **velocity** of E-M waves would be determined from **Coulomb's constant** (k) and the **constant** in **Ampere's** expression for force (k').

$$v = \sqrt{\frac{k}{k'}}$$

$$k = 9 \times 10^{9} \text{ Nm}^{2} / c^{2}$$

$$k' = 1 \times 10^{7} \text{ N/A}^{2}$$

$$velocity c = 3 \times 10^{8} \text{ m/s}$$

• However, this is also the **known value** of **speed of light** (measured by Fizeau, 1849) and prompted the **discovery** that **light** is an **E-M wave!**

(Note: This was also the first direct connection between optics and electromagnetism).

- Velocity of light is a very important constant in nature: $c = 3 \times 10^8 \text{ m/s}$ (in vacuum)
- Light (and other forms of E-M waves) travel more slowly in other media e.g. glass, H₂O, plastic...
- Velocity of **light in air** is very **close** to its **value** in **vacuum**.

Spectrum of E-M Waves

- All propagate at same speed 'c' in vacuum.
- Main difference is their wavelengths and frequencies which are related by $\underline{\mathbf{v}} = \lambda \mathbf{f}$.

E.g. Radio waves: $long \lambda$, low f.

Visible light: $\lambda \sim 10^{-6}$ m, $f \sim 10^{14}$ Hz

X-rays: very short λ , very high f

- Visible light only occupies a tiny fraction of the spectrum from $4 \rightarrow 7 \ 10^{-7} \ m$.
- Different types of E-M waves generated by different mechanism but all involve an oscillating current (or accelerated charged particle).

- Different types of E-M waves generated by different mechanism but all involve an oscillating current (or accelerated charged particle).
 - E.g. We are all emitting E-M waves in IR spectrum! (oscillating atoms in our skin act as antennas).
- E-M waves have vastly **varying properties**, e.g. penetrating capability X-rays and radio waves.`

Light and Optics (Chapter 16)

- Light is an electromagnetic wave.
- We are all very familiar with **light** as we use it to **sense** (i.e. see) our **surrounding**.

Question: How do we see something?

- Need light waves.
- Eye senses light reflected (or scattered) off the objects.

Light "Rays" and Wave Fronts

- Light from a source is scattered in all directions from any given point.
- Each and every part of an object therefore acts as (secondary) source of light waves that radiate uniformly from that point.
- These waves **spread out** (diverge) as they propagate at the **speed of light** (3 x 10⁸ m/s) **away** from the **object**.

• Like all waves, **light waves** can be **described** by their **frequency** and **wavelength** and are represented:

wavefront

rays

- If we connect the **points on the wave** that are at the **same point** in **their cycle** (e.g. the crests), we define a **wavefront**:
- Light rays are always perpendicular to the wavefronts.
- Each wavefront is **separated** by **one** wavelength.
- Wavefronts (from all points) combine together and carry the information about the shape of the object.
- However, they are complex and it is easier to use rays which are straight lines (for any given medium, e.g. glass, air).

Reflection

Plane waves reflecting in a mirror at an angle:

• The light rays (wavefronts) strike mirror at an incident angle θ_i and are reflected off the mirror at same speed at angle θ_r .

Law of Reflection (Smooth Surface):

❖ The angle the reflected ray makes with the normal to the surface of reflection equals the angle of incidence:

$$\theta_i = \theta_r$$

(Note: This is because the light waves **travel** at **same speed before** and **after reflection**.)

• The reflected ray always lies in same plane as incident ray and the surface normal.