Summary: Waves on a Rope

• By moving free end up and down we can generate a transverse wave 'pulse'.

displacement

Pulse propagates down rope to wall creating an instantaneous vertical displacement.

• A series of 'snap-shots' would show the wave moving down rope at constant speed 'v'.

• If we repeat up /down motion regularly you can make a

periodic wave.

- A periodic wave can have a <u>complex shape</u> depending on the perturbation induced.
- Harmonic waves are very important for everyday wave analysis as any complex periodic wave motion can be broken down into a sum of pure harmonic waves.

Speed of Sound

- As with the speed of a wave on a rope, the speed of sound depends on the **medium** it is propagating through.
- In air, at room temperature the speed of sound (at sea level) is approximately 340 m/s. (750 mph)
- The factors that determine speed of sound are related to how rapidly one molecule can transmit **changes in velocity** to another molecule to propagate the wave.
- In air (gases) **temperature** is a major factor as molecules have higher K.E. (ie velocities) at higher temperature.
 - eg. An increase of 10 K (10C) increases speed by \sim 6m/s. (and vice versa).
- For other gases the **mass** of molecules is important.
 - eg., hydrogen molecules are light and easier to accelerate and speed of sound is about 4 times higher than in air (for similar pressure and temperature).

Comparison of Speed of Sound

Medium	Speed
Air	~340 m/s
Water	4-5 times air speed ~1400 m/s
Metal/rock	15-20 times air speed, ~ 6000 m/s

• Speed of sound in liquids and solids is much higher as molecules much closer together.

Example: lighting vs. thunder

- Lighting flash reaches you almost instantaneously but sound travels at 340 m/s.
- Rules: 1 km takes \sim 3 s (1 mile \sim 5 s)
- By counting seconds between flash and thunder can tell how far storm is away.

Frequency of Sound Waves:

• Frequency range of human hearing is ~ 20 Hz to 20,000 Hz.

- Ultrasound and infrasound occur commonly in nature but are outside our hearing range.
- Bats, dolphins use ultrasound for echo location.
- Ultrasound used to image babies in womb.
- Whales produce powerful infrasonic calls that can be "heard" over distances of several thousand kilometers.
- Large meteors burning up in atmosphere emit infrasonic waves.

Doppler Effect

• Moving car /train horn changes pitch (frequency) as it passes you.

- The sound from the horn travels through the air at constant speed (340 m/s) regardless of vehicle motion.
- However, as the car moves towards you it catches up on the waves and they appear to bunch together.

• This motion reduces the apparent wavelength of the waves:

$$\lambda' = vT - uT$$

$$U = car speed$$

$$T = wave period$$
travels in 1 period
$$V = vT - uT$$

$$V = var speed$$

$$V = var s$$

- As speed of the wave is constant a decrease in λ creates an increase in frequency (i.e. $v = \lambda .f$) and a high pitch is heard.
- Conversely, when car passes by you the pitch decreases due to the increase in the wavelength of the sound waves.

i.e.
$$\lambda' = vT + uT$$

• The higher the speed, the larger the apparent frequency (pitch) change.

Summary:
$$f' = f(\frac{v}{v-u})$$
 source moving towards observer $f' = apparent$ frequency $f' = f(\frac{v}{v+u})$ source moving away from observer

- There is also a Doppler effect if the observer is moving relative to the source
- If you are moving towards the source, you will intersect wave crests more rapidly (than if stationary) and the frequency will appear higher.

or
$$f'=f(1+\frac{u}{v})$$
 $f = \text{source frequency}$ $u = \text{observer speed}$ $v = 340 \text{ m/s}$

• If moving away from source, the frequency will be lower.

Example: Violin tone of 440 Hz. What frequency will a cyclist hear when riding by at 11 m/s?

Towards:
$$f'=f(1+\frac{u}{v})=440\times(1+\frac{11}{340})=454 \text{ Hz}$$

Away:
$$f'=f(1-\frac{u}{v}) = 440 \times (1-\frac{11}{340}) = 426 \text{ Hz}$$

Stellar implications: If a star moving towards us it appears 'bluer'; if moving away it appears 'redder'.

Electromagnetic (E-M) Waves

- •James Clerk Maxwell predicted the existence of E-M waves in 1865).
- •Unlike sound waves, E-M waves do **NOT** need a **medium** in which to **propagate** (i.e. they can **travel** through a **vacuum**).
- •We now know there is a **vast spectrum** of **E-M waves** extending from: Radio waves \rightarrow Microwaves \rightarrow Infra red Gamma rays \leftarrow X-rays \leftarrow Ultra violet \leftarrow Visible

What is an E-M Wave?

- E-M waves consist of alternating electric and magnetic fields generated by motion of charged particles (i.e. current).
- Motion is essential for magnetic field but electric field is present regardless.
- •E-M waves (e.g. radio waves) can be **generated** by an **antenna** connected to a **rapidly varying** AC **current source**.

(Note: E-M waves are generated by any time-varying current.)

• Rapidly varying current generates a constantly changing magnetic field (magnitude and direction).

• A wave comprising these time varying fields is self sustaining that can propagate through space.

- Time-varying electric and magnetic fields in E-M wave are perpendicular to each other and to the direction of propagation (E-M waves are transverse waves).
- E-M waves can propagate **vast** distances through space.
- As a result of Maxwell's prediction (1865) of E-M waves Hertz (1888) discovered radio waves.

Velocity of E-M Waves

• Maxwell **predicted** the **velocity** of E-M waves would be determined from **Coulomb's constant** (k) and the **constant** in **Ampere's** expression for force (k').

$$v = \sqrt{\frac{k}{k'}}$$

$$k = 9 \times 10^{9} \text{ Nm}^{2} / c^{2}$$

$$k' = 1 \times 10^{7} \text{ N/A}^{2}$$

$$\text{velocity } \mathbf{c} = \mathbf{3} \times \mathbf{10^{8} m/s}$$

• However, this is also the **known value** of **speed of light** (measured by Fizeau, 1849) and prompted the **discovery** that **light** is an **E-M wave!**

(Note: This was also the first direct connection between optics and electromagnetism).

- Velocity of light is a very important constant in nature: $c = 3 \times 10^8 \text{ m/s}$ (in vacuum)
- Light (and other forms of E-M waves) travel more slowly in other media e.g. glass, H₂O, plastic...
- Velocity of light in air is very close to its value in vacuum.

Spectrum of E-M Waves

- All propagate at same speed 'c' in vacuum.
- Main difference is their wavelengths and frequencies which are related by $\underline{\mathbf{v}} = \lambda \mathbf{f}$.

E.g. Radio waves: $long \lambda$, low f.

Visible light: $\lambda \sim 10^{-6}$ m, $f \sim 10^{14}$ Hz

X-rays: very short λ , very high f

- Visible light only occupies a tiny fraction of the spectrum from $4 \rightarrow 7 \ 10^{-7} \ m$.
- Different types of E-M waves generated by different mechanism but all involve an oscillating current (or accelerated charged particle).

- Different types of E-M waves generated by different mechanism but all involve an oscillating current (or accelerated charged particle).
 - E.g. We are all emitting E-M waves in IR spectrum! (oscillating atoms in our skin act as antennas).
- E-M waves have vastly **varying properties**, e.g. penetrating capability X-rays and radio waves.`