Recap: Electric Field Lines

- Concept of electric field lines initially used by Michael Faraday (19th century) to aid visualizing electric (and magnetic) forces and their effects.
- James Clerk Maxwell (19th century), theoretician, formally developed the concept of field lines.

Positive Charge:

- Field lines radiate **outwards** from a +ve charge.
- Force on +ve test charge gives **direction** of field.

Negative Charge:

- Field lines **converge** inwards to a –ve charge.
- Force on +ve charge gives direction of field.

In both cases the strength of the electric field is given by the "density" of the field lines (i.e. closer together – the stronger the field /force).

Example: Electric Dipole

• Two equal but opposite sign charges:

- Field lines originate on positive (+ve) charge and end up on negative (-ve) charge.
- Field lines are perpendicular to charge surface (i.e. the direction of force).

Electrostatics 3

(Chapter 12)

Summary:

Coulomb's Law describes the force between two charges

$$\mathbf{F} = \frac{\mathbf{k.q_1.q_2}}{\mathbf{r^2}}$$
 Units: Newtons

- Coulomb's Law is identical in form to Newton's Gravitational Law, but force is much stronger than gravitational force and can be either attractive or repulsive.
- Electric field at a point is defined as:

$$E = \frac{F}{q}$$
 Units: N/C

- Electric field is as vector and tells us the **magnitude** and **direction** of the **force** exerted on **charge**.
- Electric field lines are an aid to visualizing electric effects.
 - Strength of field given by "density" (number) of lines.
 - Lines go from positive to negative charge.
 - Field lines always perpendicular to conductor's surface.

• Electric field of a charged conductor is everywhere **perpendicular** to the surface.

• Charge therefore **concentrates** on regions with small radius of curvature (i.e. points).

• Presence of a conductor distorts an electric field.

• The external field polarizes the conductor making one side negative and the other positive.

• This creates a "self field" inside the conductor that cancels out the applied field and leaves zero internal electric field.

Result: The electrostatic field within a conductor is always zero.

• Note: It is possible to create a field inside a hollow conductor if we insert an isolated charge inside it.

- Unlike gravity we can therefore **shield against electric fields** by surrounding the region to be isolated by a conductor.
 - Examples: Electronic components encased in metal cans.
 - Wires surrounded by braided copper sheathing.

This is why:

- We need an external antenna on a car to pick up radio waves.
- We can't pick up radio waves in tunnels and crossing bridges?
- You are safe from lightning discharges inside your car.

Electric Potential: (Voltage)

- What is **voltage?** How is it related to electrostatic potential energy?
- First let's consider the potential energy of a charged particle moving in a uniform electric field.
- Uniform field: electric field lines parallel and evenly spaced, i.e. field is constant in direction and strength at all points.

Parallel Plate Capacitor

• Device for storing electric charge.

• If a test charge (+ve) is placed in uniform field it will experience an electrostatic force in direction of electric field ($\mathbf{F} = \mathbf{q} \cdot \mathbf{E}$).

- If we release the charge it will accelerate towards —ve plate of capacitor. (Note: we can assume gravitational acceleration is very small in comparison to electrostatic acceleration).
- This will reduce the **potential energy** of charge (and increase its **kinetic energy**).
- Thus, to increase the electrostatic potential energy we have to do work on the charge moving it **against** the field direction.
- This process is analogous to changing gravitational P.E. when we lift an object against the pull of gravity.
 - i.e. Doing work raises the P.E. in a conservative system.

• Change in P.E. is given by the work done against electric field.

Work = F.d

$$\Delta PE = q.E.d$$

(analogous to P.E. = m.g.h)

Result: By doing work on the charge, we can increase its electrostatic potential energy.

Electric Potential:

- We regard the +ve charge used in a capacitor as a test charge to determine how the potential energy varies with position.
- **The change in electric potential (voltage) is equal to change in electrostatic P.E. per unit +ve charge.**

$$\Delta V = \frac{\Delta PE}{q}$$
 Units: J/C

Note: This is the definition of the volt: One Joule of work done moving a charge of 1 Coulomb.

- Like the electric field we can consider the electric potential (voltage) at any point in space.
- Remember: the change in voltage is equal to change in P.E. per unit +ve charge (or $\Delta PE = q.\Delta V$).

Thus, voltage and electric P.E. are related but **not the same.** E.g. if 'q' is negative the P.E. will decrease when moved in direction of increasing voltage.

Example: Capacitor

Question: What is voltage difference?

$$\Delta V = \frac{\Delta PE}{q} = \frac{q.E.d}{q} = E.d$$

 $\Delta V = 2000 \times 0.05 = 100 \text{ V}$

• The voltage will be maximum at the positive plate and will drop 100 V uniformly from top to bottom plate (i.e. it will be 50V in the center of capacitor).

• For uniform electric fields:

$$\Delta V = E.d$$

or
$$E = \frac{\Delta V}{d}$$
 Units: $\frac{V}{m}$

5V 10V 20V

field

lines of

Thus, larger fields exhibit larger potential drops per meter.

A lines of electric

- This is the key to electrical breakdown!
- Electric potential increases as move towards charge's (+ve) origin where electric field is largest.

- Short lifetime 1-2 hours.
- Strong convective updrafts extend high into troposphere (altitude ~ 15 km).
- Three stages: Cumulus cloud growth ~ 15 min

Mature – Rain, hail, lightning

Dissipating – subsiding air cuts off storm.

- Thunderstorms grow quickly and can be very dangerous.
- Lightning kills about 100 people in USA and Canada each year (and injures another 300 people).

- Causes 9000 forest fires per year.
- Causes 10s millions \$ in damage to power lines, transformers etc.
- During **strong convection** cloud charges up: usually –ve at base and +ve at top.
- Dry air is a very good insulator and voltages of ~ 100 million volts can be generated.
- During precipitation air breaks down and lightning strikes.
- Several types of lightning (intra cloud, cloud to ground ball, bead...)
- Only 20% is cloud to ground "fork" lightning.