Recap: Pressure

- Pressure = Force per unit area (P = F/A; units: Pascals)
- Density of object = mass / volume ($\rho = m / V$; units: kg / m³)
- Pascal's Law: Pressure is transmitted equally in all directions throughout the fluid.
- In a fluid **gravity** is the cause of **hydrostatic pressure** resulting in an **increase in pressure** with depth.

Pressure =
$$\frac{F}{A}$$
 = ρ .g.h

- Pressure at A,B,C is same: at A, C (weight of atmosphere, at B (weight of mercury).
- Thus the height of mercury is a direct measure of atmospheric pressure.
- Force due to atmospheric pressure (~10⁵ Pa) is very powerful.

Static Fluids (Chapter 9)

 Most liquids are NOT readily compressible, so increasing pressure does NOT change their volume much

- This is because the **molecules** in a liquid are **closely packed together** (like in a solid) they cannot easily be squeezed.
- Density of a liquid therefore stays the same.
- Gases (e.g. air) are much easier to compress. As the pressure changes the volume changes.
- Except at very high pressures the atoms /molecules of a gas are separated by large distances compared to size of atoms.

liquid

- The density of a gas therefore changes with pressure.
- Gases can also expand if the pressure is reduced.
- Changes in temperature have much bigger effect on gas pressure /volume than on a liquid.

Boyle's Law (Mariotte's Law) (17th century)

- How does the volume of a gas change with pressure at constant temperature?
- Experiments with "U" shaped tubes containing mercury liquid showed that the volume of trapped gas decreases as pressure increases.

$$P.V = constant$$

or
$$P_1.V_1 = P_2.V_2$$

- So if pressure increases the volume decreases to keep their product constant (at fixed temperature).
- The density (ρ) also changes **inversely** with the volume change ... (ρ = mass / volume).
- For example, if the volume decreases the density will increase and vice versa.

Examples Using Boyle's Law

Example 1: Increase pressure on a volume of air of 0.5 m³ from 1 x 10⁵ Pa (1 atmosphere) to 5 x atmospheric pressure (5 atmospheres) at constant temperature.

$$V_{1} = V_{1} = V_{2}$$

$$V_{2} = \frac{1 \times 0.5}{5} = 0.1 \text{ m}^{3} \text{ i.e. Volume reduces 5 times}$$
As density $\rho = \frac{m}{V}$ and density increases by 5 times.

Example 2: Same volume of air (0.5 m^3) at sea level is allowed to expand (at constant temperature) to height of 10 km where pressure = $26 \times 10^3 \text{ Pa}$.

$$V_{2} = \frac{0.5 \times (1 \times 10^{5})}{26 \times 10^{3}} = 1.9 \text{ m}^{3} \text{ (Volume increased)}$$
(Density ρ decreases by factor of \sim 4)

Floatation

- Why do some objects float easily while others sink?
 - Does it depend on its weight?
 - What is the effect of objects shape?
- Answer: Density is the key to floatation!
- Objects whose average density is greater than the fluid they are immersed in will sink, but those less dense will float.
- Example: Wood is less dense ($\rho = \text{mass} / \text{volume}$) than water and floats; steel is more dense and it sinks!

Buoyancy Force

- If you push down on a block of floating wood you instantly feel a force pushing back.
- Force is large very hard to submerge a low density object (e.g. life jacket).
- The upward force is called Buoyancy Force.
- The more you **push down** a partially submerged object (e.g. toy duck) the **larger the buoyancy** force response.

Archimedes' Principle

- Archimedes realized what determines the **strength** of the buoyancy force.
- When an object is **submerged** it **takes up space** previously occupied by the **liquid**, i.e. it **displaces** the fluid.
- The more fluid displaced, the greater the upward buoyancy force.
- Once an object is **completely submerged** it cannot **displace any more liquid** and the **buoyancy force** will remain **constant** (with depth change).
- **The buoyant force acting on an object (partially or fully) submerged in a fluid is equal to the weight of fluid displaced.**
- An object will therefore **float** if it **displaces** a volume of fluid that is **heavier** than the object.
- i.e. The buoyant force is greater than object's weight...

Origin of Buoyant Force

ρ

h₁

h,

- The source of the buoyant force is the **change in pressure** with depth.
- Pressure acting on bottom of block is larger than top due to increase of pressure with depth
- Results in net upward force.

At a given depth: $P = \rho.g.h$ The pressure difference $= \rho.g.\Delta h$ (where $\Delta h = h_2 - h_1$)

Force due to pressure difference $= \rho.g.\Delta h$. (volume block)

- **\clubsuit** Buoyancy force = ρ .g.V = weight liquid displaced (m.g)
- The buoyant force is therefore dependent on the density and volume (i.e. weight) of liquid displaced.

State of Floatation (3 possibilities)

• The weight of an object and the resultant buoyancy force determine whether it will float or sink.

1. Density of object greater than fluid density:

- Weight of object is greater than weight of fluid displaced (as volume is same when fully submerged).
- Net force (weight buoyancy) is downward; it sinks!
- Example: A submarine takes on sea water to replace air and increases its average density (i.e. weight) to submerge.

2. Density of object less than fluid density:

- Buoyant force is **larger** than object's **weight** when fully submerged.
- Net force is upward! Object will float at an equilibrium level where buoyancy force = weight.

3. Density of object equals that of fluid:

• The weight of object exactly equals the weight of fluid displaced when it is **fully submerged**.

3. Density of object equals that of fluid (cont):

- The object floats when fully submerged.
- Fish, and submarines exist in this state changing their average density slightly to rise or fall in depth.

Effect of Shape on Floatation

- Metal is much more dense than water but can be made to float by creating a shape /volume whose average density is less than water.
- At equilibrium (floatation) the buoyant force equals ships weight.
- When it takes on cargo, the ship will sink lower in water (to new equilibrium position).
- In a storm if a ship takes on too much water its average density (and weight) will increase and it will sink if it exceeds water density.

Floating in the Air

- Buoyancy force acts on objects submerged in a gas e.g. air.
- If a balloon is filled with a gas whose **density** is **less** than air, (and the **average density** of balloon and gas is **less** than air), then it will **rise**.
- Helium gas (He) is often used (hydrogen too dangerous). Old Zeppelin balloons used hydrogen with disastrous consequences.
- Balloons are made of very **light materials** e.g. mylar (often coated with aluminum).
- They are thin, light, strong and impermeable to the gas contained.
- Note: Helium easily escapes through normal elastic balloon why they only stay up at children's parties for a day or so...
- Hot air balloons: as air expands when heated, it becomes less dense and balloon rises.
- A balloon will **rise** until its **average density** equals that of the **surrounding air** (just like a submarine floating in water).

Summary

- Archimedes' principal states that the buoyant force acting on an object is equal to the weight of fluid displaced.
- If the average density of object is greater than density of fluid displaced, the weight of object will exceed buoyant force and it will sink (and vice versa).
- Buoyancy force is due to pressure difference between top and bottom of submerged object (as pressure increases with depth).
- Buoyancy is a very useful force:
 - Ship floatation; cargo transport.
 - Balloon flights
 - Density determination (irregular shaped objects Archimedes' original goal).