Fluid Behavior (Chapter 9)

- The Earth is **bathed** in **fluids**:
 - The oceans cover 70% of the surface area.
 - Air surrounds the planet in a deep (100 km thick) blanket protecting us from harmful space radiation.
- Both air and water are fluids...

yet one is a gas and the other a liquid.

- A **fluid** has **no shape** and readily conforms ("**flows**") to the shape of a container.
- A solid object has its own shape.
- Liquids are usually much denser (i.e. heavier) than gasses of the same volume.
- All fluids are affected by pressure which plays a key role in describing their behavior.
- Question: What is pressure?

- When an object (mass 'm') rests on a surface it exerts a pressure on it due to its weight (W = m.g) and area of contact.
- Both objects exert the same force (due to their weight) on the surface but the pressure extended is very different.

Pressure is the ratio of the applied force to the area over which it acts:

$$P = \frac{F}{A}$$
 (Units: N/m² = 1 Pa) (After Pascal, 17th century)

- Force per unit area (i.e. pressure) is very important quantity. (Large pressure at point of a needle!)
- Pressure determines if a surface will yield or not (not just the force).
- Example: Use snow shoes with large area to walk on top of lightly packed snow.

Pascal's Principle

Force

Force is

to surface.

perpendicular

- What happens inside a fluid when pressure is exerted on it?
- Fluid experiences a compression force.
- Volume may reduce (especially in a gas).
- By Newton's 3rd law, the pressurized fluid will "react back" and exert an equal and opposite force on piston (like a compressed spring).
- However, it will push outward uniformly in all directions on all surfaces of container (not just the piston).
- **Any** change in pressure of a fluid is transmitted uniformly in all directions throughout the fluid.
- Pascal's principle is the basis for many hydraulic devices including the jack, car brakes, flight control lines, engines, landing gears...

Hydraulic Jack

• Depends on principle of uniform transmission of pressure throughout the fluid.

Method:

• Apply a force F₁ to piston of small area (A₁) to create a large pressure increase $(P = F_1/A_1)$.

- Increased pressure P then acts uniformly on large area piston (A_2) to create an **amplified force** $(F_2 = P.A_2)$.
- This force can then lift heavy objects (e.g. car).

As pressure is equal throughout system: $\frac{F_2}{F_1} = \frac{A_2}{A_1}$

$$\frac{\mathbf{F_2}}{\mathbf{F_1}} = \frac{\mathbf{A_2}}{\mathbf{A_1}}$$

- The mechanical advantage (ratio F_2/F_1) is given by ratio of piston areas.
- Mechanical advantage of hydraulic systems is higher than simple machines (as it depends on area).

- However, the **work done** by jack **cannot exceed** the work input to system (conservation of energy).
- As Work = Force x Distance, the smaller piston must **move a greater distance** (equal to the mechanical advantage of the system).

Example: Jack operation:
$$F_1 = 20 \text{ N}, A_1 = 2 \text{ cm}^2, A_2 = 1 \text{ m}^2$$

Pressure in fluid = $\frac{F_1}{A_1} = \frac{20}{2 \times 10^{-4}} = 10^5 \text{ Pa}$
Force on lifting piston = $F_2 = P.A_2 = 10^5 \times 1 = 10^5 \text{ N}$
(= 10,000 kg)
Mechanical advantage = $\frac{A_2}{A_1} = \frac{1}{2 \times 10^{-4}} = 5 \times 10^3$

- This all looks great until you realize:
- 1. To raise jack 1 m, the small piston would need to move 5 km!
- 2. High pressures can cause system failure!

Result: Need more practical mechanical advantage e.g. 100:1, and high quality pressure systems.

Gravity and Hydrostatic Pressure

- In a fluid at rest pressure acts perpendicular to the surfaces of container /body.
- Pressure is a scalar quantity and has magnitude but no direction.

• Gravity is the cause of hydrostatic pressure resulting in an increase in pressure with depth.

Question: What is pressure on area 'A' at depth 'h' parallel to surface?

• Downward force on top of area must equal weight of column of liquid above it.

Volume column = A.h

Mass of column = density x volume = ρ .A.h

liquid

Thus weight force = $m.g = \rho.A.h.g$

Pressure =
$$\frac{F}{A} = \rho.g.h$$

(Note: Density of fluid = Mass / Volume)

Example: What is pressure (due to water only) at 20 m below sea surface?

Density (
$$\rho$$
) of salt water = 1.025 x 10³ kg/m³
Depth h = 20 m.
 $\mathbf{P} = \rho \cdot \mathbf{g} \cdot \mathbf{h} = (1.025 \times 10^3) \times 9.81 \times 20$

$$P = 2.0 \times 10^5 \text{ Pa}$$

(Note: Pressure change for each $1 \text{ m} = 10^4 \text{ Pa}$)

Pressure in a Container

Pressure at every point at a given horizontal level in a single body of fluid at rest is the same.

Points A, B, C

Note: Shape of container is not important!

Atmospheric Pressure

- We live immersed at the bottom of a sea of air!
- Air (oxygen) is essential for life on Earth but pure air is colorless and odorless.
- We feel air by wind pressure or as a resistance to high speed motion (e.g. skydiver).
- Air is a **fluid** in which **pressure** is generated by **gravity** just as in liquids.
- 17th century student of Galileo (Torricelli) investigated atmospheric pressure and in doing so invented the barometer.
- Torricelli used mercury as it is much more dense (13.6 times) than water.
- Pressure at A,B,C is same.
- Pressure at A, C is due to weight in atmosphere.
- Pressure at B is due to weight of mercury (as pressure at top tube = 0).

• Thus the height of mercury is a direct measure of atmospheric pressure.

i.e. Atmospheric pressure = mercury pressure (at point B) = ρ .g.h = $(13.595 \times 10^3) \times (9.81) \times (0.76)$ Thus: Atmospheric pressure = 1.01×10^5 Pa (at sea level) or: atmospheric pressure = 14.7 lbs / inch² or: = 76 cm (29.9" Hg)

- This pressure is due to a mass of $\sim 5 \times 10^{18}$ kg of air pressing down on the Earth!
- Atmospheric pressure is very powerful...e.g. the force on a 1 m diameter sphere: $area = 4 \pi r^2$

Force =
$$(1.01 \times 10^5) \times \pi = 3.14 \times 10^5 \text{ N}$$
 (= π)
(or force = 71,581 lbs!) force = P x A

• This was demonstrated in a famous experiment where two teams of eight horses each tried in vain to pull an evacuated sphere apart. (von Guericke's experiment, 17th century)

Variations in Atmospheric Pressure

• Living in Utah we are well aware of fact that air pressure (and amount of oxygen) is less here than at sea level.

• Atmospheric pressure and density decrease rapidly (exponentially) with height.

• Most of the atmosphere resides within 10-15 km of surface (the troposphere). However neutral gas is detectable up to ~ 100 km altitude.

• Weather disturbances also affect atmospheric pressure. (Moist air is lighter and pressure reduces -a 'low'; dry air is heavier and pressure increases - a 'high').

• Example pressures:

Center of Sun 2×10^{16} Pa Center of Earth 4×10^{11} Pa Deepest ocean 1.1×10^{8} Pa Spiked heel $\sim 10^{7}$ Pa Best lab vacuum $\sim 10^{-12}$ Pa Pressure Earth's atmos: Sea level 1×10^5 Pa 1 km 90×10^3 Pa 10 km 26×10^3 Pa 100 km ~ 0.1 Pa

Venus atmosphere 90×10^5 Pa (very dense, mainly CO_2) Mars atmosphere ~ 700 Pa (very thin, mainly CO_2)