Units of Measurements

Units are an essential part of any measurement.

eg. Gas in the USA is sold by the gallon but in Europe it is sold by the liter (1 gal ~ 4 l).

Types of units:

English / US (inch, foot, yard, mile, pound, pint, quart, gallon)
Metric (meter, kilogram, liter)

* The metric system uses standard prefixes representing multiples of 10 and is much simpler to use.

```
eg. kilo = 1000, mega = 1,000,000, giga = 1,000,000,000 milli = 1/1,000, micro = 1/1,000,000, nano = 1/1,000,000,000
```

Example: $1 \underline{\text{kilo}}$ meter = 1000 meters, $\underline{\text{kilo}}$ gram = 1000 grams $1 \underline{\text{milli}}$ liter = 1/1,000 liter = 0.001 liters

Compare with: 1 mile = 5,280 feet = 63,360 inches

Scientific Notation (Appendix B)

Physics deals with a vast range of scale sizes from atoms and molecules (billionth of a meter) to every day phenomena (m, km) to stellar and galactic dimensions (trillions of km).

Scientific notation (power of 10) allows us to represent these numbers in a simple and concise way.

eg.
$$100 = 10 \times 10 = 10^2$$
 $1,000 = 10^3$ $100,000 = 10^5$ etc. $1/1,000 = 10^{-3}$ $1/100,000 = 10^{-5}$ etc.

Examples:

or

1. Distance from the Earth to the Sun ...

$$D = 150,000,000 \text{ km}$$

 $D = 15 \times 10^7 \text{ km} \text{ (or } D = 1.5 \times 10^8 \text{ km)}$

2. Red color in rainbow has a wavelength...

```
or ? = 0.0000007 \text{ m}
or ? = 0.7 \times 10^{-6} \text{ m} (or ? = 7.0 \times 10^{-7} \text{ m})
```

Table B.1 Examples of Scientific Notation

Positive powers of ten

(MASS EARTH IN Kg)

Negative powers of ten (fractions)

0.62	=	6.2	times one-tenth	=	6.2	$\times 10^{-1}$
0.0523	=	5.23	times one-hundredth	=	5.23	$\times 10^{-2}$
0.0082	=	8.2	times one-thousandth	=	8.2	$\times 10^{-3}$
0.000 0024	=	2.4	times one-millionth	=	2.4	× 10 ⁻⁶
0.000 000 0079	=	7.9	times one-billionth	=	7.9	$\times 10^{-9}$
0.000 000 000 000.0				=	1.6	$\times 10^{-19}$

Multiplying Powers of 10:

Rule: Add together powers of 10

Example: Jet flying at speed of sound for one hour...

$$D = \text{speed x time} = (300 \text{ m/s}) \text{ x } (3,600 \text{ s})$$

$$2 + 3 = 5$$

D = $(3 \times 10^2) \times (3.6 \times 10^3) = 10.8 \times 10^5 \text{ m}$

Dividing Powers of 10:

Rule: Subtract denominator power from numerator power.

Example: Car travelling 60 km in 30 min...

Speed =
$$\frac{\text{Distance}}{\text{Time}} = \frac{60,000 \text{ m}}{30 \times 60 \text{ s}} = \frac{6 \times 10^4 \text{ m}}{18 \times 10^2 \text{ s}} = \frac{2}{18 \times 10^2 \text{ s}}$$

Speed =
$$\frac{1}{3}$$
 x 10² m/s = 0.33 x 10² m/s = 33 m/s

Examples of Metric Units

Length: meter (m) $1 \text{ km} = 1000 \text{ m} (\sim 0.6 \text{ miles})$

1 light- year = $9.46 \times 10^{15} \text{ m}$

Mass: kilogram (**kg**) 1 kg = 1000 g (~ 2.2 lbs)

Mass of Earth = $5.98 \times 10^{24} \text{ kg}$

Volume: liter (*l*) 1 l = 1000 ml (1 gal = 3.786 l)

Energy: Joules (J) or N.m (1 calorie = 4.2 J)

Temperature: Kelvin (K) "Absolute zero" 0K = -273°C

Force: Newtons (N) (1 lb = 4.448 N)

Pressure: Pascal (Pa) or N / m^2

Atmospheric Pressure = $1 \times 10^5 \text{ Pa} (=14.78 \text{ lb/in}^2)$

Useful values:

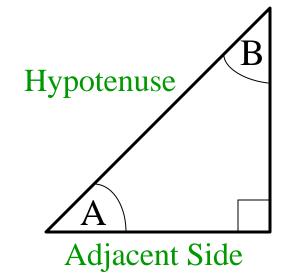
Speed of light $\sim 3.0 \times 10^8 \text{ m/s}$

Acceleration due to gravity = $9.81 \text{ m/s}^2 \text{ (approx } 10 \text{ m/s}^2\text{)}$

Electron charge = $1.6 \times 10^{-19} \text{ C}$ (Coulombs)

Basic Trigonometry:

Right Angle Triangle



Opposite side

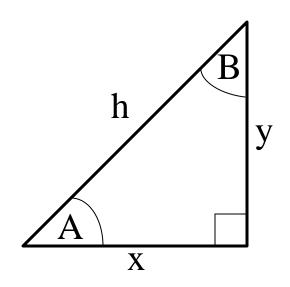
$$\angle A + \angle B + 90^{\circ} = 180^{\circ}$$

or $\angle A + \angle B = 90^{\circ}$

$$\sin A = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\tan A = \frac{\text{opposite}}{\text{adjacent}}$$

$$\cos A = \frac{\text{adjacent}}{\text{hypotenuse}}$$



$$\sin A = \frac{y}{h}$$

$$\tan A = \frac{y}{x}$$

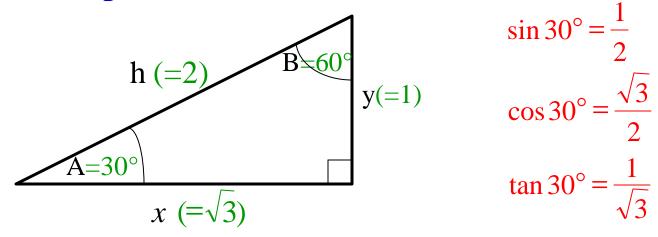
$$\cos A = \frac{x}{h}$$

$$h = \sqrt{x^2 + y^2}$$

$$\sin A = \frac{y}{h}$$
 and $\cos B = \frac{y}{h}$

so
$$\sin A = \cos B$$
 and vice versa

Example



Triangle components:

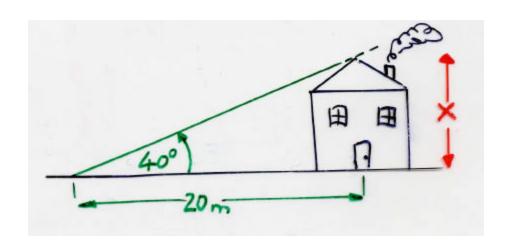
$$\sin A = \frac{y}{h} \text{ or } y = h.\sin A$$

$$\cos A = \frac{x}{h} \qquad x = h.\cos A$$

$$\tan A = \frac{y}{x} \qquad y = x.\tan A$$

Resolving a right angle triangle into its horizontal (x) and vertical (y) **components** can be **very helpful** in solving problems of motion as well as static trigonometry.

Example: Calculate the height of your house...



$$\tan A = \frac{x}{y}$$

$$x = y \cdot \tan A$$

$$= 20 \text{m} \cdot \tan 40^{\circ}$$

$$= 20 \text{ x } 0.84 = 16.8 \text{ m} \text{ high}$$

Scalars and Vectors

Scalar: Measure of quantity or size sometimes called "magnitude".

Examples: Length, volume, mass, temperature, speed...

Vectors: Many measurements in physics require a knowledge of the magnitude and direction of quantity. These are termed vector quantities.

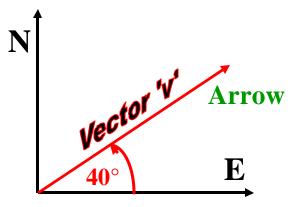
Examples: Velocity, acceleration, force, electric field...

Direction is an essential feature of a vector quantity.

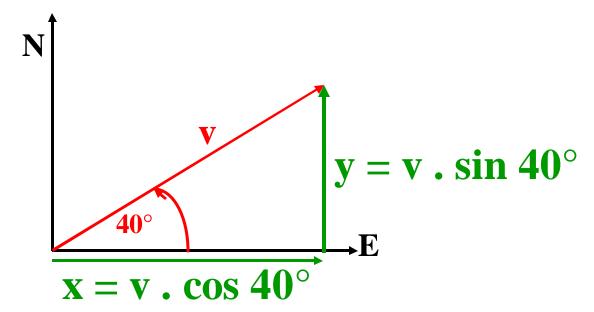
Example: Flying at 1000 km/hr due North is quite different to the same speed due East!

Vectors require 2 pieces of information **MAGNITUDE** and **DIRECTION**.

How to Represent a Vector:

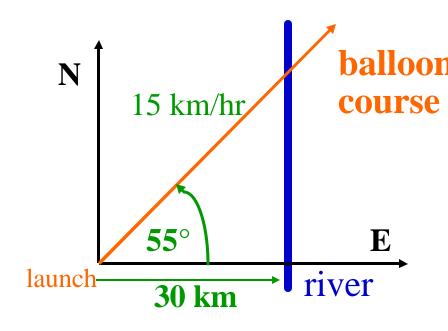


- Represents its magnitude by its length.
- Represents its direction by its angle.



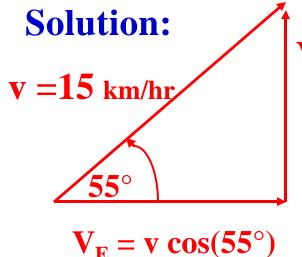
We have resolved the vector motion into 2 "orthogonal components".

Example:



Questions:

- 1. How fast is the balloon moving eastward?
- 2. How long before the balloon crosses the river?



$$V_N = v \sin(55^\circ)$$

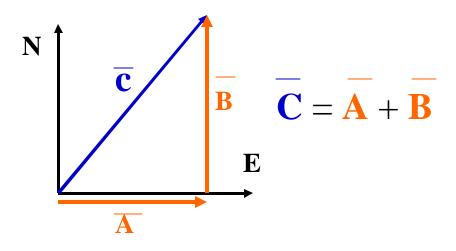
$$V_E = v \cos(55^\circ) = 15 \times 0.5736 = 8.6 \text{ km/hr}$$

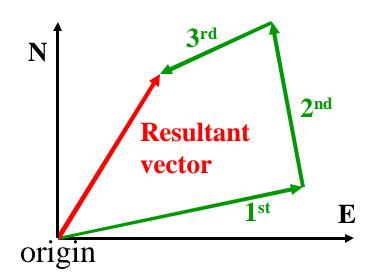
As river is 30 km due E; the balloon will reach it in: 30/8.6 = 3.49 hrs.

Note: can also use v_N to get distance traveled Northwards.

How to add vectors:

We are often interested in combining 2 (or more) vectors to solve a problem. e.g. Flying in strong winds.

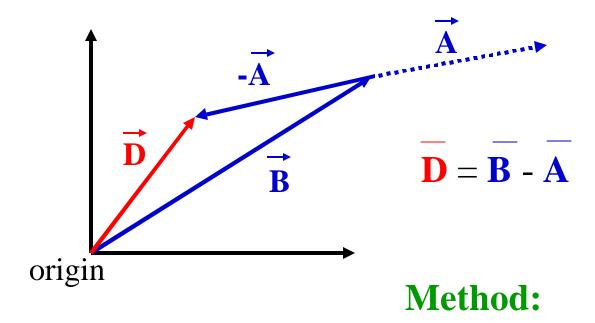




Method: (graphical)

- 1. Draw 1st vector to scale and in appropriate direction,
- 2. Start 2nd vector at head of 1st vector and in appropriate direction.
- 3. Repeat for other vectors.
- 4. **Resultant** (sum) vector is found by drawing **vector** from origin to head of last vector.

Vector subtraction:



- 1. Draw B vector to scale and in positive direction.
- 2. Draw \overline{A} vector from tip of B but in opposite direction to yield $(-\overline{A})$.
- 3. Resultant difference vector \mathbf{D} is found by joining the origin to the tip of $(-\overline{\mathbf{A}})$ vector.

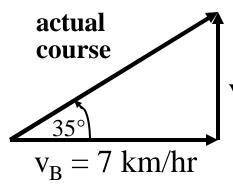
Note: Alternate solution is given by finding the horizontal and vertical vector components and adding/subtracting as appropriate.

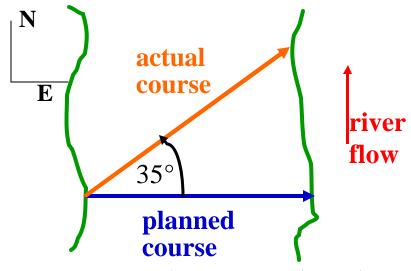
Example vector velocities:

Boat crossing a river...

Question: How fast is the river flowing?

Solution:





Boat speed $v_B = 7 \text{ km/hr}$.

$$v_R = v_B \tan(35^\circ) = 7 \times 0.7002 = 4.9 \text{ km/hr}$$

Answer: The river is flowing at **4.9 km/hr Northwards**.

Note: To cross the river on planned course, the boat needs to aim upriver at an angle of 35°. Aircraft always need to take account of wind to get to the right place!