# **Recap: Solid Rotational Motion (Chapter 8)**

- We have developed equations to describe rotational displacement ' $\theta$ ', rotational velocity ' $\omega$ ' and rotational acceleration ' $\alpha$ '.
- We have used these new terms to modify **Newton's 2<sup>nd</sup> law** for rotational motion:

$$\tau = I.\alpha$$
 (units: N.s)

' $\tau$ ' is the applied torque ( $\tau = F.I$ ), and 'I' is the moment of inertia which depends on the <u>mass</u>, <u>size</u> and <u>shape</u> of the rotating body ('I' ~ m r<sup>2</sup>)

#### **Example:** Twirling a baton:



• The **longer** the baton, the **larger** the moment of inertia 'I' and the **harder** it is to rotate (i.e. need bigger torque).

Eg. As 'I' depends on r<sup>2</sup>, a doubling of 'r' will quadruple 'I'!!!

#### Angular Momentum (L)

• Linear momentum 'P' is a very important property of a body: P = m.v (kg. m/s)

- An increase in mass or velocity of a body will increase its linear momentum (a vector).
- Linear momentum is a measure of the **quantity of motion** of a body as it can tell us how much is moving and how fast.

#### **Angular Momentum (L):**

\*Angular momentum is the product of the rotational inertia 'I' and the rotational velocity 'ω':

$$L = I. \omega$$
 (units: kg. m<sup>2</sup>/s)

- 'L' is a vector and its magnitude and direction are key quantities.
- Like linear momentum, angular momentum 'L' can also be increased by increasing either 'I' or ' $\omega$ ' (or both).

#### Angular Momentum (L)

$$L = I. \omega$$
 (units: kg.m<sup>2</sup>/s)

• As 'I' can be different for different shaped objects of same mass (e.g. a sphere or a disk), the angular momentum will be different.

**Example:** What is angular momentum of the Earth?

$$\omega = \frac{2\pi}{T} = 0.727 \times 10^{-4} \text{ rad/sec}$$
 T = 24 hrs,   
For a solid sphere:  $I = \frac{2}{5} \text{ m.r}^2$   $r = 6400 \text{ km}$   $m = 6 \times 10^{24} \text{ kg}$   $m = 6 \times 10^{24} \text{ kg}$ 

Thus: L = I.  $\omega = 7.1 \times 10^{33} \text{ kg.m}^2/\text{s}$ 

(If Earth was flat, 'L' would be even larger as 'I' is larger)

# **Conservation of Angular Momentum (L)**

- Linear momentum is **conserved** when there is **NO** net force acting on a "system"…likewise…
- **❖** The total angular momentum of a system is conserved if there are NO net torques acting of it.
- Torque replaces force and angular momentum replaces linear momentum.
- Both linear momentum and angular momentum are very important conserved quantities (magnitude and direction).

# **Rotational Kinetic Energy:**

• For linear motion the kinetic energy of a body is:

$$KE_{lin} = \frac{1}{2} \text{ m. } v^2$$
 (units: J)

• By analogy, the kinetic energy of a rotating body is:

$$KE_{rot} = \frac{1}{2} I. \omega^2$$
 (units: J)

• A rolling object has both linear and rotational kinetic energy.

**Example:** What is total KE of a rolling ball on level surface?

Let: m = 5 kg, linear velocity v = 4 m/s, radius r = 0.1 m, and angular velocity  $\omega = 3$  rad/s (0.5 rev/s)

Total KE = KE<sub>lin</sub> + KE<sub>rot</sub>  
KE<sub>lin</sub> = 
$$\frac{1}{2}$$
 m.  $v^2 = \frac{1}{2}.5.(4)^2 = 40$  J  
KE<sub>rot</sub> =  $\frac{1}{2}$  I.  $\omega^2$ 

Need:  $I_{\text{solid sphere}} = \frac{2}{5} \text{ m. } r^2 = \frac{2}{5} \times 5 \times (0.1)^2 = 0.02 \text{ kg.m}^2$ 

Thus: 
$$KE_{rot} = \frac{1}{2} \times (0.02) \times (3)^2 = 0.1 \text{ J}$$
  
Total  $KE = 40 + 0.1 = 40.1 \text{ J}$ 

Result: The rotational KE is usually much less than the linear KE of a body.

E.g. In this example The rotational velocity ' $\omega$ ' would need to be increased by a factor of  $\sim \sqrt{400} = 20$  times, to equal the linear momentum (i.e to 10 rev/s).

### **Summary: Linear vs. Rotational Motion**

| Quantity                     | Linear Motion                  | <b>Rotational Motion</b>             |
|------------------------------|--------------------------------|--------------------------------------|
| Displacement                 | d (m)                          | θ (rad)                              |
| Velocity                     | v (m/s)                        | ω (rad/s)                            |
| Acceleration                 | a (m/s <sup>2</sup> )          | $\alpha$ (rad / $s^2$ )              |
| Inertia                      | m (kg)                         | I (kg.m²)                            |
| Force                        | F (N)                          | τ (N.m)                              |
| Newton's 2 <sup>nd</sup> law | F = m.a                        | $\tau = I. \alpha$                   |
| Momentum                     | P = m.v                        | $L = I. \omega$                      |
| <b>Kinetic Energy</b>        | $KE_{lin} = \frac{1}{2}.m.v^2$ | $KE_{rot} = \frac{1}{2} I. \omega^2$ |
| <b>Conservation of</b>       | P = constant                   | L = constant                         |
| momentum                     | $(if F_{net} = 0)$             | $(if \tau_{net} = 0)$                |

- Conservation of angular momentum requires both the magnitude and direction of angular momentum vector to remain constant.
- This fact produces some very interesting phenomena!

# **Applications Using Conserved Angular Momentum Spinning Ice Skater:**

- Starts by pushing on ice with both arms and then one leg fully extended.
- By pulling in arms and the extended leg closer to her body the skater's rotational velocity 'ω' increases rapidly.

#### Why?

- Her **angular momentum is conserved** as the external torque acting on the skater about the axis of rotation is very small.
- When both arms and 1 leg are extended they contribute significantly to the moment of inertia 'I'...
- This is because 'I' depends on mass distribution and distance<sup>2</sup> from axis of rotation ( $I \sim m.r^2$ ).
- When her arms and leg are pulled in, her moment of inertia reduces significantly and to conserve angular momentum her rotational velocity increases (as L = I.  $\omega = conserved$ ).
- To slow down the skater simply extends her arms again...

# Example: Ice skater at S.L.C. Olympic games

Initial I = 3.5 kg.m<sup>2</sup>,  
Initial 
$$\omega$$
 = 1.0 rev /s,  
Final I = 1.0 kg.m<sup>2</sup>,  
Final  $\omega$  = ?

#### As L is conserved:

$$L_{\text{final}} = L_{\text{initial}}$$

$$I_{f} . \omega_{f} = I_{i} . \omega_{i}$$

$$\omega_{f} = \frac{I_{i} . \omega_{i}}{I_{f}} = \frac{3.5 \times 1.0}{1.0}$$

$$\omega_{f} = 3.5 \text{ rev/s.}$$



Thus, for spin finish  $\omega$  has increased by a factor of 3.5 times.

# **Other Examples**

#### **Acrobatic Diving:**

- Diver initially extends body and starts to rotate about **center of gravity.**
- Diver then goes into a "tuck" position by pulling in arms and legs to **drastically reduce** moment of inertia.
- Rotational velocity therefore increases as no external torque on diver (gravity is acting on CG).
- Before entering water diver extends body to reduce 'ω' again.

#### **Hurricane Formation:**



# **Pulsars: Spinning Neutron Stars!**

- When a star reaches the end of its active life gravity causes it to collapse on itself (as insufficient radiant pressure from nuclear fusion to hold up outer layers of gas).
- This causes the moment of inertia of the star to decrease drastically and results in a tremendous increase in its angular velocity.
- **Example:** A star of similar size & mass to the Sun would shrink down to form a very dense object of diameter ~25 km! Called a 'neutron' star!
- A neutron star is at the center of the Crab nebula which is the remnant of a supernova explosion that occurred in 1054 AD.
- This star is **spinning at 30 rev /sec** and emits a dangerous **beam of x-rays** as it whirls around (like a light house beacon) **30 times each second**. (~73 million times faster than the Sun!).
- Black holes are much more exotic objects that also have tremendous angular momentum.

#### **Angular Momentum and Stability**

#### Key:

- Angular momentum is a vector and both its magnitude and direction are conserved (... as with linear momentum).
- Recap: Linear momentum 'P' is in <u>same direction</u> as velocity.
- Angular momentum is due to angular velocity 'ω'.



Right hand rule: The angular velocity for <u>counter clockwise</u> rotation is <u>directed upwards</u> (and vice versa).

- i.e. 'ω' and 'L' in direction of extended thumb.
- Thus, the direction of 'L' is important as it requires a torque to change it.
- Result: It is difficult to change the axis of a spinning object.

# Stability and Riding a Bicycle



- At rest the bicycle has **no angular momentum** and it will fall over.
- Applying **torque** to rear wheel produces angular momentum.
- Once in motion the **angular momentum** will **stabilize** it (as need a torque to change).

# How to Turn a Bicycle

- To turn bicycle, need to change direction of angular momentum vector (i.e. need to introduce a torque).
- This is most efficiently done by **tilting** the bike over in direction you wish to turn.
- This introduces a **gravitational torque** due to shift in center of gravity no longer over balance point which causes the bicycle to **rotate** (start to fall).

# How to Turn Bicycle...





- The **torque** which causes the bicycle to rotate (fall) downwards generates a second angular momentum component  $(\Delta L = I.\omega_{fall})$
- Total angular momentum  $L_2 = L_1 + \Delta L$
- ΔL points backwards if turning left of forwards if turning right.
- Result: We use gravitational torque to change direction of angular momentum to help turn a bend.
- The larger the initial 'L' the smaller the  $\Delta$ L needed to stay balanced (slow speed needs large angle changes).

### **Summary**

- Many examples of **changing rotational inertia** 'I' producing interesting phenomena.
- Angular momentum (and its conservation) are key properties governing motion and stability of spinning bodies ranging from atoms to stars and galaxies!
- Many practical uses of spinning bodies for stability and for energy storage / generation:
  - •Helicopters
  - Gyroscopes
  - Spacecraft reaction wheels
  - Generators and motors
  - •Engines, fly wheels etc.