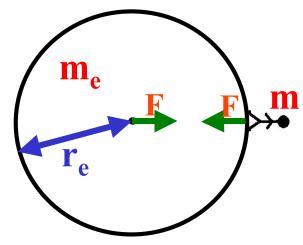
Recap: Newton's Gravitational Law

The gravitational force between two objects is proportional to their masses and inversely proportional to the square of the distance between their centers.

$$F = \frac{G m_1 m_2}{r^2}$$
 (Newtons)

• F is an attractive force vector acting along line joining the two centers of masses.


• G = Universal Gravitational Constant

$$G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 \frac{\text{(very small)}}{\text{small}}$$

Note: G was not measured until > 100 years after Newton! - by Henry Cavendish (18th cen.)

$$(\mathbf{F}_1 = -\mathbf{F}_2)$$

How is Weight Related to Gravitation?

$$r_e = radius of Earth = 6370 km$$

m = mass of an object

 $m_e = \text{mass of Earth} = 5.98 \times 10^{24} \text{ kg}$

Gravitational force of attraction:

$$\mathbf{F} = \frac{\mathbf{G} \ \mathbf{m}_1 \mathbf{m}_2}{\mathbf{r}^2} \qquad (\mathbf{N})$$

if m = 150 kg, F = 1472 N (or $\sim 330 \text{ lbs wt}$)

But this force creates the object's weight:

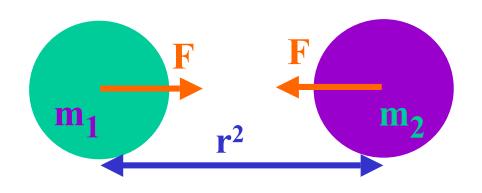
By Newton's 2nd law (F=ma) we can also calculate weight:

$$W = m g = 9.81 \times 150 = 1472 N$$

By equating these expressions for gravitational force:

$$\mathbf{m} \ \mathbf{g} = \frac{\mathbf{G} \ \mathbf{m}_{\mathbf{e}} \ \mathbf{m}}{\mathbf{r_{\mathbf{e}}}^2}$$
 or at surface: $\mathbf{g} = \frac{\mathbf{G} \ \mathbf{m}}{\mathbf{r_{\mathbf{e}}}^2}$

Result: 'g' is independent of mass of object!!


- **Thus acceleration due to gravity 'g' is:**
 - 1. Constant for a given planet and depends on planets mass and radius.
 - 2. Independent of the mass of the accelerating object! (Galileo's discovery).
- **However, the gravitational force 'F' is dependent on object mass.**
- **❖** In general, the gravitational acceleration (g) of a planet of mass (M) and radius (R) is:

$$g = \frac{GM}{R^2}$$

This equation also shows that 'g' will decrease with altitude:

e.g. At 100 km height $g = 9.53 \text{ m/s}^2$ At moon's orbit $g = 2.7 \times 10^{-3} \text{ m/s}^2$

'g' m/s ²	
3.7	1
8.9	no solid
9.8	
1.6	
3.7	
26	
12	
11	surface
12]]
2]
	3.7 8.9 9.8 1.6 3.7 26 12 11 12

- Newton's 3^{rd} law: Each body feels same force $F = \frac{Gm_1m_2}{r^2}$ acting on it (but in opposite directions)
- Thus each body experiences an acceleration!

Example: Boy 40 kg jumps off a box:

Force on boy: $F = m g = 40 \times 9.81 = 392 \text{ N}$

Force on Earth: $F = m_e a = 392 N$

or $a = \frac{392}{5.98 \times 10^{24}} = 6.56 \times 10^{-23} \text{ m/s}^2$ ie. almost zero!

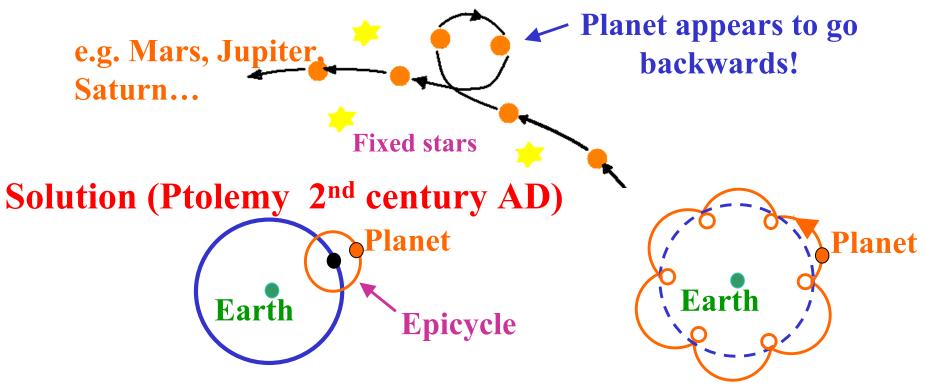
Example: 3 billion people jumping off boxes all at same time (mass 100 kg each)

 $a = \frac{3 \times 10^{9} \times 100 \times 9.81}{5.98 \times 10^{24}} = 5 \times 10^{-13} \text{ m/s}^{2}$

Conclusion: The Earth is so massive, we have essentially no effect on its motion!

Planetary Motions & Orbits (Chapter 5)

- Heavenly bodies: sun, planets, stars...How planets move? Greeks:
- Stars remain in the same relative position to one another as they move across the sky.
- Several bright "stars" exhibit motion relative to other stars.
- Bright "wanderers" called planets.
- Planets roam in regular but curious manner.


Hypothesis:

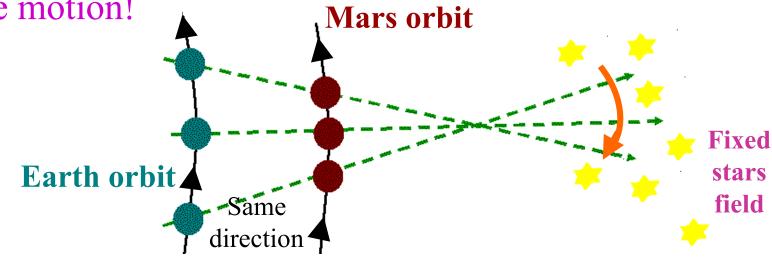
- Geocentric "Earth-centered" universe!
- Sun moves around the Earth like on a long rope with Earth at its center.
- Stars lying on a giant sphere with Earth at center.
- Moon too exhibits phases as it orbits Earth.

Plato: Concentric spheres – sun, moon and 5 known planets each move on a sphere centered on the Earth.

Big problem – Planets do not always behave as if moving continuously on a sphere's surface.

Retrograde motion (happens over several months)

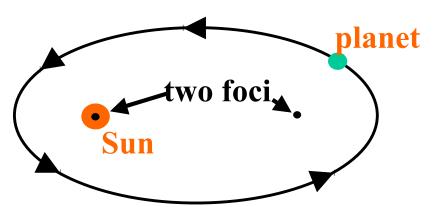
Epicycles –circular orbits –not on spheres.


Planets moved in circles that rolled around larger orbits - still centered on Earth.

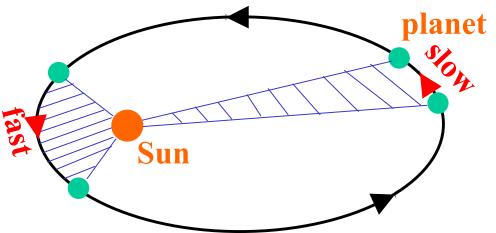
Heliocentric Model: Copernicus (16th century)

- Sun centered view that was later proven by Galileo using telescope observations of Jupiter and its satellite moons.
- Bad news: demoted Earth to status of just another planet!
- Revolutionary concept required the Earth to spin (to explain Sun's motion).
- If Earth spinning why are we not thrown off? (at 1000 mph).

• Good news: no more need for complex epicycles to explain retrograde motion!


Mars orbit

Result: Earth moves faster in orbit and Mars <u>appears</u> to move backwards at certain times.


- Copernicus heliocentric model assumed circular orbits but careful observations by **Tycho Brahe** (the last great "naked eye" astronomer) showed not true...
- **Kepler** (17th century, Brahe's student) developed three laws based on emperical analysis of Brahe's extensive data...
- 1.) Orbits of planets around the sun are ellipses with Sun at one focus.

Note: A circle is a special case of an ellipse with 2 foci coincident.

In reality, the planets' orbits are very close to circular but nevertheless are slightly elliptical.

2nd law: Describes how a planet moves faster when nearer the Sun.

2. A radius vector from Sun to planet sweeps out equal areas in equal times.

3rd law: Lots of numbers later (trial and error) Kepler discovered that to a very high approximation, the period of orbit is related to average radius of orbit:

3.
$$\frac{T^2}{r^3}$$
 = constant Same value for constant for all planets (except the Moon)

• This means that the "outer" planets (i.e. further from the Sun than Earth) all have much larger orbital periods than Earth (and vice versa).

i.e.
$$T^2 \propto r^3$$

• So if we know T (by observations) we can find "r" for each planet!

Conclusion:

• These careful observations and new formula set the scene for Newton's theory of gravitation...

$$\mathbf{F} = \frac{\mathbf{G} \, \mathbf{m}_1 \, \mathbf{m}_2}{\mathbf{r}^2}$$

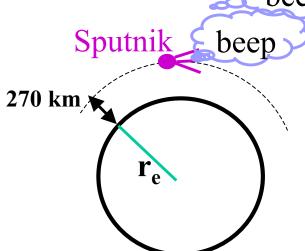
• Using **Kepler's 3rd law**, Newton calculated:

$$\frac{\hat{O}^2}{r^3} = \frac{4 D^2}{G m} = constant (for a given 'm')$$

where: $\mathbf{m} = \mathbf{mass}$ of Sun for the planetary motions, but $\mathbf{m} = \mathbf{mass}$ of Earth for the Moon's motion.

• Hence Kepler's different result for the constant

$$\frac{T^2}{r^3}$$
 = a constant number

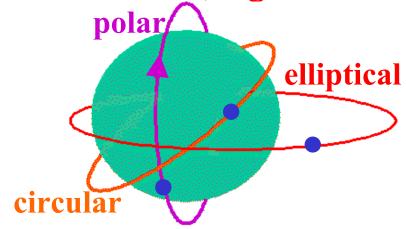

for moon compared with other planets!

Artificial Satellites

- Each of the **planets** will have its own value of $\frac{1}{r^3}$ for its satellites (as constant has a 1/m dependence).
- But in each case as $T^2 \propto r^3$ the **lower** the altitude of the satellite the **shorter** its orbital period.
- Example: 1st Earth satellite "Sputnik" (1957)

Launched into a very low altitude orbit of ~ 270 km (any lower and atmospheric drag would prevent

orbital motion).


Example: Geosynchronous Orbit

• Orbital period = 24 hours

• Permits satellites to remain "stationary" over a given equatorial longitude.

For T = 24 hrs => r = 42,000 km (to center Earth) i.e. altitude ≈ 7 R_e (compared with 60 R_e for Moon.)

- Geostationary orbit is very important for Earth observing and communications satellites a very **busy** orbit!
- In general there are many, many possible orbits, e.g.:
 - -Circular and elliptical
 - –Low Earth orbits (LEO)
 - -Geostationary orbit
 - -Polar orbit
 - -e.g. GPS system uses many orbiting satellites.

Orbital Velocity

 We can equate centripetal force to gravitational attraction force to determine orbital speed (v_{or}).

For circular motion:

Centripetal force = gravitational force $(F_C = F_C)$

$$\frac{m v_{or}^{2}}{r} = \frac{G M m}{r^{2}}$$

$$m = \text{satellite's mass}$$

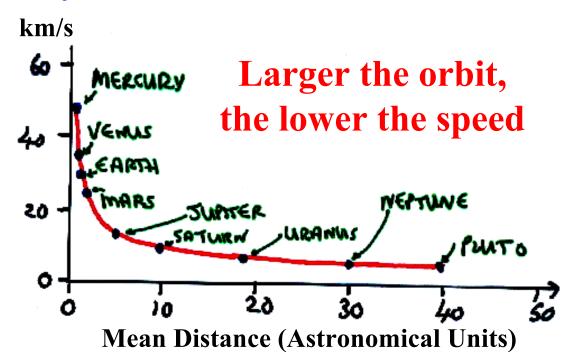
$$m = \text{satellite's mass}$$

$$m = \text{satellite's mass}$$

 $\mathbf{M} \gg \mathbf{m}$

Results:

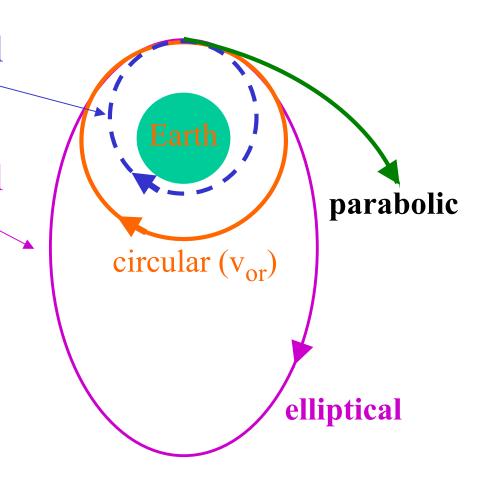
- Any satellite regardless of its mass (provided M » m) will move in a circular orbit or radius r and velocity vor.
- The larger the orbital altitude, the lower the required tangential velocity!


Example: Low Earth orbit: altitude 600 km)

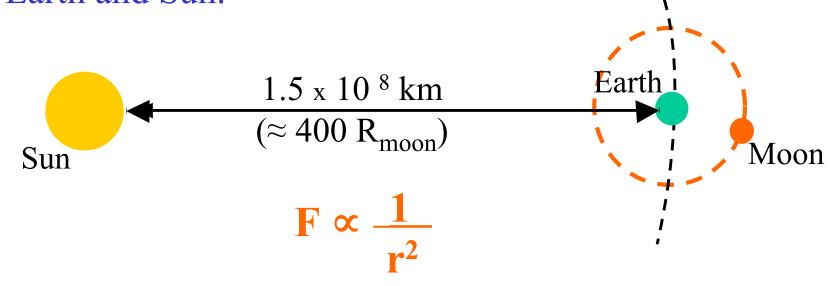
$$v_{or} = \sqrt{\frac{G M}{r}} = \sqrt{\frac{(6.67 \times 10^{-11}) \times (5.98 \times 10^{-24})}{6970 \times 10^{3}}}$$

= 7.6 km/s (or 27 × 10³ km/hr)

Planetary Orbital Velocity:


$$v_{or} \propto \sqrt{\frac{M}{r}}$$

M = mass of theSun


Qu: How to achieve orbit?

- Launch vehicle rises initially vertical (minimum air drag).
- Gradually rolls over and on separation of payload is moving tangentially at speed v_{or} produces circular orbit.
- If speed less than v_{or}, craft will descend to Earth in an (decaying) elliptical orbits.
- If speed greater than v_{or} it will ascend into a large elliptical orbit.
- If speed greater than $\sqrt{2V_{or}}$ it will escape earths gravity on parabolic orbit!

Lunar Orbit

• Not a simple ellipse... due to gravitational force of Earth and Sun.

- Gravitational attraction between Earth and Moon provides centripetal acceleration for orbit.
- Sun's gravitation distorts lunar orbital ellipse. (Orbit oscillates about true elliptical path.)

Moon

Sun light

New

moon

• The only satellite Newton could study and played a key role in his discoveries...

Half moon

• Phases known since prehistoric times...

 Moonlight is reflected sunlight.

• Phases simply due to geometry of sun, moon and Earth. Phases repeat every 27.3 days (lunar orbit).

Full moon:

Moon on opposite side of Earth from Sun.

Earth

Full

moon

- Fully illuminated disk.
- Rises at sunset and sets at sunrise (due to Earth's 24 hr rotation).
- Lunar eclipse only during full moon.

• At other times during moon's orbit of Earth, we see only a part of illuminated disk.

New moon: • Moon on same side of Earth as the Sun.

- Essentially invisible (crescent moons seen either side of New moon).
- Rises at sunrise and sets at sunset (i.e. up all day).
- Solar eclipse condition.
- When moon is in-between full and new phase, it can often be seen during daylight too.
- Example: half moon rises at noon and sets at midnight (and vice versa).
- Under good observing conditions (at sunset or sunrise) you can see dark parts of moon illuminated by Earthshine!