PHYS-1800	Homework 9	Due: 2 April, 2010
Name:		(show all workings)
1. The first la	aw of thermodynamics is an extension of thethat we first met in mechanics.	principle of conservation of (1 point)
Derforms some variable. A. the interest B. the interest of th	riment a certain amount of heat is transferred into work on its surroundings but the amount of work do er concludes that: ernal energy of the system increased. ernal energy of the system decreased. nust have been a phase change.	•
_	J.	Assuming this means 120 kcal, (1 point)
various substanc	ases a new thermometer calibrated in Kelvin units ces. Calculate the temperature (a) at which merculas (600 K) in degrees Centigrade and Fahrenheit for e	ary freezes (234 K), and (b) at
and glass. Whe	s each of four different materials is used in a heat of en 120 calories of heat is added to each body, ear each are, 39.6°C for steel, 87.2°C for lead, 24.1°C for the largest specific heat capacity is which of the form	ach initially at 18°C, the fina or alcohol and 33.0°C for glass
neat which must	al. al.	

PHYS-1800	Homework 9	Due: 2 April, 2010
Name:		(show all workings)
7. The temperature of 50 gram sa calories of heat is added. The specif A. 0.11 cal/g °C B. 15.4 cal/g °C C. 0.22 cal/g °C D. 0.91 cal/g °C	ample of aluminum is raised from 20 ic heat capacity of the metal is:	° C to 90° C when 770 (2 points)
	vater will be higher	
Explain your answer:		
Using a specific heat capacity for wa	rnal energy of the system?	20 g of water at 15° C. (3 points)
10. Explain what we mean when v cooling process".	we say that "freezing is a warming pro	ocess while melting is a (3 points)

DHVC 1900	Homowork 0	Duo. 2 April 2010
PHYS-1800	Homework 9	Due: 2 April, 2010
Name:		(show all workings)
Two additional questions w	orth up to a total of 10 extra point	s:
atmospheric pressure) in ordeheat of ice = 2.1 kJ/kg.K, spe	ch heat must be added to a 1.5 kg er to transform it into superheated st exific heat of water = 4.2 kJ/kg.K, sp of ice = 334 kJ/kg and latent heat of	team at 125° C. (Assume: specific ecific heat of steam = 2.0 kJ/kg.K ,
(b) State how much and	l at which stage most of the energy is	s used. (5 points)

Please turn over..

Name:	(show all workings)

- 2. A 200-gram quantity of an unknown metal, initially at 110° C, is dropped into an insulated beaker containing 100 grams of water at 20° C. The final temperature of the metal and water in the beaker is measured to be 38° C. If no heat is transferred to the beaker, determine: (5 points)
 - (a) How much heat is transferred from the metal to the water?
 - (b) The specific heat capacity of the metal?
 - (c) If in a new experiment the final temperature of the water and metal was 70° C, what quantity of metal (initially at 110° C) was dropped into the beaker of water?