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We derive expressions for the dynamical matrix of a crystalline solid with total potential en-
ergy described by an embedded-atom-method (EAM) potential. We make no assumptions
regarding the number of atoms per unit cell. These equations can be used for calculating
both bulk phonon modes as well the modes of a slab of material, which is useful for the
study of surface phonons. We further discuss simplifications that occur in cubic lattices
with one atom per unit cell. The relationship of Born-von-Kármán (BvK) force constants –
which are readily extracted from experimental vibrational dispersion curves – to the EAM
potential energy is discussed. In particular, we derive equations for BvK force constants
for bcc and fcc lattices in terms of the functions that define an EAM model. The EAM
– BvK relationship is useful for assessing the suitability of a particular EAM potential
for describing vibrational spectra, which we illustrate using vibrational data from the bcc
metals K and Fe and the fcc metal Au.

I. INTRODUCTION

Embedded-atom-method (EAM) models are popularly used to calculate vibrational properties of
crystalline materials, both in the bulk and at surfaces.1 The key to these calculations is a quantity
known as the dynamical matrix D: the eigenvalues and eigenvectors of D respectively give the
normal-mode frequencies and polarizations. However, (i) the few equations for D that appear in
the literature are only applicable to solids with one atom per unit cell, and (ii) discrepancies exist
among these equations for D.2–6

To the end of having an accurate set of expressions for D that can be used for any crystalline
solid, here we derive general equations for D within the EAM formalism. These general expressions
can be used for finding bulk vibrational modes in monatomic materials (such as bcc, fcc, and hcp
metals) as well as crystalline alloys. Vibrational modes of a slab – which is the typical setting for
studying vibrations at the surface of a solid – can also be investigated using our derived equations.

EAM modeling of vibrations is perhaps most commonly used to study bcc and fcc materials; we
therefore also derive simplified expressions that are applicable to these materials. Furthermore,
as vibrational data from materials with these two lattice structures are often analyzed to extract
Born-von-Kármán (BvK) atomic force constants (FCs), we derive equations that relate the BvK
constants to a general EAM potential. Using K, Fe, and Au as examples, we conclude by illustrating
how BvK analysis gives insight into the suitability of a particular EAM potential for describing
vibrational properties.

II. EAM MODEL

In this section we outline the standard embedded-atom-method model.7 Our presentation is
general enough that it can be can be applied to materials with multiple types of atoms in each
unit cell.

The total energy E of a solid in the EAM formalism is written as

E = Ep + Ee, (1)
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where

Ep =
1

2

∑
nα

∑
mβ

φβα( rmβ
nα ) (2)

and

Ee =
∑
nα

Fα(ρ(rnα)). (3)

Here Ep is a sum of interatomic pair potentials φβα(= φαβ), where m and n label the unit cells

of the solid and α and β label the (perhaps different types of) atoms within each unit cell. The
combination mα (for example) thus accounts for all atoms in the solid. The argument rmβ

nα of the
pair potential is the distance between the atoms labeled bymα and nβ. That is, rmβ

nα = |rmβ−rnα|.
The potential φβα is thus associated with a central force. In the sums in (2) terms with nα = mβ are
excluded as these would correspond to a self-interaction. The energy Ee is the sum of individual
energies Fα associated with embedding each atom in a background charge density ρ at that atom’s
position rnα. As is standard practice, we assume ρ(rnα) to be a sum of individual atomic charge
densities,

ρ(rnα) =
∑
mβ

fβ( rnα
mβ). (4)

Here fβ( rnα
mβ) is the charge density from atom mβ at the location of atom nα. That fβ is a function

of rnα
mβ follows from the assumption the atomic charge densities have spherical symmetry.

The indices α and/or β on φ, F , and f are the minimum number of required indices, as these
functions are not expected to be the same for different types of atoms. However, in the interest of
notational simplicity, we enlarge the number of indices by making the definitions

φmβnα = φβα( rmβ
nα ), (5)

Fnα = Fα(ρ(rnα)), (6)

and

fnαmβ = fβ( rnα
mβ). (7)

These functions define any EAM model; as we see below, derivatives of these functions are key
components of the dynamical matrix.

We note an extension to embedded-atom method presented here, known as the modified analytic
EAM (MAEAM), has been used to calculate vibrational properties of alkali and noble metals.8–12

Originally introduced to account for the negative Cauchy pressure in Cr, the key feature of the
MAEAM is an additional energy term that depends upon the square of the atomic charge density.13

However, as the MAEAM does not appear to possess any advantage for describing vibrational
structure, we shall not consider it further.

III. DYNAMICAL MATRIX

Here we outline a description of the vibrational dynamics of a solid with energy E as given
above. Our overall goal is to find the normal modes of vibration of the atoms in the solid. As
we shall see, a quantity known as the dynamical matrix is the key to finding the frequencies and
atomic displacements associated with these modes.

A. General Formalism

We start with the general development of D, which closely follows that of Ibach and Lüth.14 If
we assume the atoms in a crystal do not move far from their equilibrium positions, then we may

–2–



D. M. Riffe, et al. EAM – BvK Vibrational Dynamics

expand the energy E in a Taylor series in the set of displacements {snα} of the atoms. Up to
second order the energy can be expressed as

E = E0 +
1

2

∑
nαi

∑
mβj

Kmβj
nαi snαi smβj . (8)

where E0 is the equilibrium energy of the solid and

Kmβj
nαi =

∂2E

∂rnαi∂rmβj
. (9)

Here i and j represent Cartesian coordinates. We note the right side of (9) is evaluated at equilib-
rium, and the case nα = mβ is not excluded.

Utilizing (8) Newton’s second law gives us the equations of motion for the atoms,

Mαs̈nαi =
∑
mβj

(
−Kmβj

nαi

)
smβj , (10)

where Mα is the mass of atoms labeled by α. This last equation tells us −Kmβj
nαi is the force on

atom nα in the Cartesian direction i when atom mβ is displaced in the Cartesian direction j a
unit distance.

If we now assume the displacements of all atoms are coherently related by a plane wave with
wave vector k and angular frequency ω,

snαi =
1√
Mα

uαi e
i(k·rn−ωt), (11)

then the equations of motion for the atoms become a set of coupled algebraic equations,∑
βj

Dβjαi(k)uβj = ω2 uαi, (12)

where

Dβjαi(k) =
1√

MαMβ

∑
m

Kmβj
nαi e

ik·(rm−rn), (13)

are the Cartesian components of a quantity known as the dynamical matrix D(k). Here rm− rn in
(13) is the displacement between identical locations within the m and n unit cells. If there are N
atoms per unit cell, then D(k) is a 3N × 3N matrix. The eigenvalues ω2 and eigenvectors uαi of D
characterize the normal modes of motion; for each wave vector k there are 3N vibrational modes.

B. EAM Force Constants

In the following two subsections we sequentially find the pair-potential contribution pD(k) and
the embedding-energy contribution eD(k) to the dynamical matrix D(k) = pD(k)+ eD(k) for cases
that include more than one atom per unit cell.

1. Pair-Potential Contribution

For the pair-potential contribution pD(k) to the dynamical matrix we require

p
Kmβj
nαi =

∂2Ep

∂rnαi∂rmβj
. (14)

Using (2) this expression can be written as

p
Kmβj
nαi =

1

2

∂

∂rnαi

[
∂

∂rmβj

∑
n′α′

∑
m′β′

φm
′β′

n′α′

]
. (15)
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Within the double sum there is one set of terms with n′α′ = mβ and one set with m′β′ = mβ.
This last equation thus simplifies to

p
Kmβj
nαi =

1

2

∂

∂rnαi

[ ∑
m′β′

∂φm
′β′

mβ

∂rmβj
+
∑
n′α′

∂φmβn′α′

∂rmβj

]
. (16)

Because (i) φmβnα = φnαmβ and (ii) the indices on the sums are dummy indices, this expression itself
simplifies to

p
Kmβj
nαi =

∂

∂rnαi

∑
m′β′

∂φmβm′β′

∂rmβj
. (17)

The only nonzero terms on the right side of this equation are those with either mβ = nα or
m′β′ = nα. Therefore we can express (17) as

p
Kmβj
nαi =

∑
m′β′

∂2φmβm′β′

∂rmβi∂rmβj
δnmδαβ +

∂2φmβnα
∂rnαirmβj

(1− δnmδαβ), (18)

where δnm is the standard Kronecker delta. We note the last term on the right side of this equation
is the FC associated with the force on atom nα when a different atom mβ is displaced, while the
sum of terms (over m′β′) is the FC associated with the force on atom mβ when that same atom
is displaced.

We can make progress towards evaluating the derivatives in (18) owing to the pair potential φmβnα
being related to rmβj and rnαi through its argument via

rmβ
nα = |rmβ − rnα| =

√
(rmβx − rnαx)2 + (rmβy − rnαy)2 + (rmβz − rnαz)2 (19)

(where i and j are one of x, y, or z). We require derivatives of this argument; from (19) we find

∂ rmβ
nα

∂rmβj
=
rmβj − rnαj
|rmβ − rnα|

= r̂mβ
nαj (20)

and

∂ rmβ
nα

∂rnαj
=
rnαj − rmβj
|rmβ − rnα|

= − r̂mβ
nαj , (21)

where we have defined r̂mβ
nαj to be the jth component of the unit vector that points from atom nα to

atom mβ. We also require derivatives of this unit vector. Utilizing (19) – (21) it is straightforward
to verify

∂ r̂mβ
nαj

∂rmβi
=

∂

∂rmβi

rmβj − rnαj
|rmβ − rnα|

=
δij

|rmβ − rnα|
− (rmβj − rnαj)(rmβi − rnαi)

|rmβ − rnα|3
, (22)

which we succinctly express as

∂ r̂mβ
nαj

∂rmβi
=

1

rmβ
nα

(
δij − r̂mβ

nαj r̂mβ
nαi

)
. (23)

Similarly, we find

∂ r̂mβ
nαj

∂rnαi
= − 1

rmβ
nα

(
δij − r̂mβ

nαj r̂mβ
nαi

)
. (24)

Appealing to (20), (21), (23), and (24) we apply the chain rule to (18) to express the FC as

p
Kmβj
nαi =

∑
m′β′

[
Dφmβm′β′

rmβ
m′β′

(
δij − r̂mβ

m′β′i r̂mβ
m′β′j

)
+D2φmβm′β′ r̂mβ

m′β′i r̂mβ
m′β′j

]
δnmδαβ

−

[
Dφmβnα

rmβ
nα

(
δij − r̂mβ

nαi r̂mβ
nαj

)
+D2φmβnα r̂mβ

nαi r̂mβ
nαj

]
(1− δnmδαβ), (25)
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where Dφmβnα and D2φmβnα are respectively the first and second derivatives of φmβnα with respect to
its argument rmβ

nα (evaluated at the equilibrium positions of the atoms). When this expression

is substituted into (13) for Kmβj
nαi one obtains the pair-potential part of the dynamical matrix

pDβjαi(k).

2. Embedding-Energy Contribution

To find the embedding-energy contribution to the dynamical matrix we formally proceed as we
just have for the pair-potential part. The bulk of the calculation consists of finding an expression
for the FCs

e
Kmβj
nαi =

∂2Ee

∂rnαi∂rmβj
. (26)

Using (3) we start by writing (26) as

e
Kmβj
nαi =

∂

∂rnαi

[∑
n′α′

∂

∂rmβj
Fα′
(
Σm′β′fβ′( rn′α′

m′β′)
)]
. (27)

Here we have also used (4) to explicitly express the argument ρ(rn′α′) of Fα′ in terms of the atomic

charge densities fβ′( rn′α′

m′β′). As written, this equation portends the complexity of the final result.

From (27) we observe that nonzero terms only occur if n′α′ = mβ or m′β′ = mβ. Applying
the chain rule and using our previous expressions (20) and (21) for the derivatives of rmβ

nα we
straightforwardly obtain

e
Kmβj
nαi =

∂

∂rnαi

∑
m′β′

(
DFmβDf

mβ
m′β′ +DFm′β′Dfm

′β′

mβ

)
r̂mβ
m′β′j , (28)

where (as is the case with Dφmβnα ), DFnα and Dfmβnα are derivatives of Fnα and fmβnα with respect to
their arguments ρ(rnα) and rmβ

nα , respectively. Quite obviously, we now need derivatives of three

types of terms: Dfmβm′β′ , DFmβ , and r̂mβ
m′β′j . Derivatives of the last of these three quantities are

given by (23) and (24), while derivatives of the first two quantities can be expressed as

∂Dfmβm′β′

∂rnαi
= D2fmβm′β′

(
r̂mβ
m′β′i δnmδαβ − r̂mβ

m′β′i δnm′δαβ′

)
(29)

and

∂DFmβ
∂rnαi

= D2Fmβ

[ ∑
m′′β′′

(
Dfmβm′′β′′ r̂mβ

m′′β′′i δnmδαβ

)
−Dfmβnα r̂mβ

nαi

(
1− δnmδαβ

)]
. (30)

Using (23), (24), (29), and (30) we rewrite (28) as

e
Kmβj
nαi =

e1
Kmβj
nαi +

e2
Kmβj
nαi +

e3
Kmβj
nαi , (31)

where

e1
Kmβj
nαi =

∑
m′β′

(
DFmβDf

mβ
m′β′ +DFm′β′Dfm

′β′

mβ

) 1

rmβ
m′β′

(
δij − r̂mβ

m′β′i r̂mβ
m′β′j

)
δnmδαβ

−
(
DFmβDf

mβ
nα +DFnαDf

nα
mβ

) 1

rmβ
nα

(
δij − r̂mβ

nαi r̂mβ
nαj

)
(1− δnmδαβ), (32)

e2
Kmβj
nαi =

∑
m′β′

(
DFmβD

2fmβm′β′ +DFm′β′D2fm
′β′

mβ

)
r̂mβ
m′β′i r̂mβ

m′β′j δnmδαβ

−
(
DFmβD

2fmβnα +DFnαD
2fnαmβ

)
r̂mβ
nαi r̂mβ

nαj (1− δnmδαβ), (33)
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and

e3
Kmβj
nαi =

∑
m′β′

∑
m′′β′′

D2Fmβ Df
mβ
m′′β′′ Df

mβ
m′β′ r̂mβ

m′′β′′i r̂mβ
m′β′j δnmδαβ

−
∑
m′β′

D2Fmβ Df
mβ
nα Dfmβm′β′ r̂mβ

nαi r̂mβ
m′β′j (1− δnmδαβ)

−
∑
m′β′

D2FnαDf
nα
m′β′ Dfnαmβ r̂nα

m′β′i r̂nα
mβj (1− δnmδαβ)

+
∑
m′β′

D2Fm′β′ Dfm
′β′

nα Dfm
′β′

mβ r̂m′β′

nαi r̂m′β′

mβj . (34)

We note the last term in (34) includes terms with nα = mβ and nα 6= mβ. When
e
Kmβj
nαi as given

by (31) – (34) is substituted into (13) for Kmβj
nαi one obtains the embedding-energy part of the

dynamical matrix eDβjαi(k). We have thus completed the determination of D in the most general
case.

Nelson et al.15 have published expressions for Kmβj
nαi when mβ 6= nα; their expressions are

consistent with the mβ 6= nα terms in (25) and (32) – (34). Nelson et al. do not directly
consider the nα = mβ FCs. Their equations might therefore seem incomplete. However, knowing
the mβ 6= nα FCs is sufficient, as Newton’s third law allow one to readily find find Knαj

nαi via

Knαj
nαi = −

∑
mβ( 6=nα)K

mβj
nαi . This fact is readily apparent in (25), (32), and (33), where we see the

mβ = nα FC is indeed the negative of the sum over the mβ 6= nα FCs. Owing to simplifications
that occur in the derivation of (34), the analogous relationship between the mβ = nα and mβ 6= nα
FCs is not so readily apparent in this equation.

C. Effective Pair Potentials

The EAM energy expressed by (1) – (3) has the interesting property that the division of E into
the components Ep and Ee is not unique. Indeed, if we define the transformed pair-potentials

φ̄mβnα = φmβnα +Amβf
mβ
nα +Anαf

nα
mβ (35)

and embedding energies

F̄nα = Fnα −Anα ρ(rnα), (36)

then it is straightforward to show the total energy E is unchanged. Here Anα is a constant
associated with the atom designated by the subscript nα. Because Anα can be different for each
atom in the solid, the transformation defined by (35) and (36) can be viewed as a local gauge
transformation.

A particularly useful transformation occurs if we choose Anα = DFnα where (as above) DFnα is
the derivative of Fnα with respect to its argument ρ(rnα) evaluated at the equilibrium positions
of the atoms in the material. Then (35) and (36) become

φ̄mβnα = φmβnα +DFmβf
mβ
nα +DFnαf

nα
mβ (37)

and

F̄nα = Fnα −DFnα ρ(rnα). (38)

If we now calculate DF̄nα [the derivative of F̄nα with respect to the argument ρ(rnα) evaluated at
equilibrium], we straightforwardly obtain the simple result

DF̄nα = 0. (39)

Because the transformation expressed by (37) and (38) can be applied to any EAM model, all EAM
models can be put on equal footing. Indeed, embedded-atom-method models with the property
DF̄nα = 0 are known as normalized.16 Owing to φ̄mβnα containing all pair-like interactions, the
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transformed potentials φ̄mβnα are often referred to as effective pair potentials. In fact, a number of
EAM models found in the literature impose DFnα = 0 from the outset.4,16–21

The possibility of normalizing any EAM model is manifest in our above equations for
p
Kmβj
nαi

and
e
Kmβj
nαi . Notice the sum of the embedding force-constant components

e1
Kmβj
nαi and

e2
Kmβj
nαi [see

(32) and (33)] is of the same form as the pair-potential constant
p
Kmβj
nαi [see (25)]. Indeed, the sum

of (25), (32), and (33) can be succinctly expressed in terms of the effective pair potentials φ̄mβnα as

ep
Kmβj
nαi =

∑
m′β′

[
Dφ̄mβm′β′

rmβ
m′β′

(
δij − r̂mβ

m′β′i r̂mβ
m′β′j

)
+D2φ̄mβm′β′ r̂mβ

m′β′i r̂mβ
m′β′j

]
δnmδαβ

−

[
Dφ̄mβnα

rmβ
nα

(
δij − r̂mβ

nαi r̂mβ
nαj

)
+D2φ̄mβnα r̂mβ

nαi r̂mβ
nαj

]
(1− δnmδαβ), (40)

Insofar as
e3
Kmβj
nαi [see (34)] cannot be subsumed into a transformed pair-potential FC, it can be

surmised that
e3
Kmβj
nαi is the only part of Kmβj

nαi uniquely attributable to many-body interactions.

IV. APPLICATION TO BULK BCC AND FCC MATERIALS

Quite obviously, the general results for the FCs and resulting dynamical matrix are rather
complicated. Sometimes these equations must be applied in their full glory, as when using a slab
in order to study vibrations near the surface of a material.

However, when calculating the bulk dynamics of a cubic lattice with one atom per unit cell – as
is the case of a bcc or fcc material – a significant number of simplifications occur. (i) Because there
is only one atom per unit cell we may drop the indices (α, β, etc.) that label the atoms within each
unit cell. (ii) Because all atoms are equivalent, the derivatives of F are the same for each atom; we
thus define the constants F ′ = DFm and F ′′ = D2Fm. (iii) Because all of the atoms are the same,
we necessarily have Dfmn = Dfnm and D2fmn = D2fnm. (iv) Because the bcc and fcc lattices have
inversion symmetry, the first three terms in (34) are each identically zero. Taking these features
into account, the equations for the force constants [(40) and (34)] respectively simplify to

ep
Kmj
ni =

∑
m′

[
Dφ̄mm′

rm
m′

(
δij − r̂m

m′i r̂m
m′j

)
+D2φ̄mm′ r̂m

m′i r̂m
m′j

]
δnm

−
[
Dφ̄mn
rm
n

(
δij − r̂m

ni r̂m
nj

)
+D2φ̄mn r̂m

ni r̂m
nj

]
(1− δnm), (41)

and

e3
Kmj
ni = F ′′

∑
m′

Dfm
′

n Dfm
′

m r̂m′

ni r̂m′

mj . (42)

The effective pair potential between any two atoms is now succinctly expressed as

φ̄mn (r) = φmn (r) + 2F ′fmn (r). (43)

With these simplifications for the FCs, a fairly simple form for the dynamical matrix follows.

Inserting (41) for
ep
Kmj
ni into (13) yields the effective pair-potential contribution to the dynamical

matrix

epDji (k) =
1

M

∑
m

[
Dφ̄mn
rm
n

(
δij − r̂m

ni r̂m
nj

)
+D2φ̄mn r̂m

ni r̂m
nj

] [
1− cos

(
k·(rm − rn)

)]
, (44)

where M is the mass of each atom. In writing this equation we have taken advantage of the
relationships φ̄mn = φ̄nm, rm

n = rn
m, and r̂m

n = − r̂n
m. We have also utilized the symmetry of the

cubic lattice to explicitly eliminate the imaginary part of the dynamical matrix. Because (44) only
depends upon rn via the displacement rm − rn, there is no dependence upon n; this translational
symmetry allows one to assume rn is located at the origin.
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We are left with finding the contribution of
e3
Kmj
ni to the dynamical matrix. Inserting (42) into

(13) readily gives us this remaining contribution,

e3Dji (k) =
F ′′

M

∑
m

∑
m′

Dfm
′

n Dfm
′

m r̂m′

ni r̂m′

mj e
ik·(rm−rn). (45)

As it stands, this equation is a double sum on the two indices m and m′. We can simplify it to
the product of two independent single sums (which is much faster to numerically compute) with a
few manipulations. We first switch the order of the sums in (45) to yield

e3Dji (k) =
F ′′

M

∑
m′

Dfm
′

n r̂m′

ni

∑
m

Dfm
′

m r̂m′

mj e
ik·(rm−rn). (46)

We now define a new summation variable m′′ for the interior sum via m − m′ = m′′ − n. This
gives us rm = rm′′ + rm′ − rn, which allows us to rewrite (46) as

e3Dji (k) = −F
′′

M

∑
m′

Dfm
′

n r̂m′

ni e
ik·(rm′−rn)

∑
m′′

Dfm
′′

n r̂m′′

nj e
ik·(rm′′−rn). (47)

Notice this equation is indeed the product of two independent sums. The symmetry of the lattice
allows further simplification, as only the terms containing the product sin(k(rm′−rn)) sin(k(rm′′−
rn)) yields a nonzero contribution. We can thus write our final form for this part of the dynamical
matrix as

e3Dji (k) =
F ′′

M

∑
m′

Dfm
′

n r̂m′

ni sin
(
k·(rm′ − rn)

) ∑
m

Dfmn r̂m
nj sin

(
k·(rm − rn)

)
. (48)

Together (44) and (48) represent the total dynamical matrix for a single-atom-basis material with
cubic symmetry.22

We note the result represented by (44) and (48) is consistent with that reported by Ningsheng
et al.,3 who pointed out the equations published by Daw and Hatcher2 were missing a factor of 2
in the terms containing F ′ [see (43)]. The uncorrected result of Daw and Hatcher has apparently
been used by Kaznac et al. on two occasions.5,6 We further note (44) and (48) are consistent with
the expression for D given by Wang and Boercker.4

V. RELATIONSHIP TO BVK FORCE CONSTANTS

In this section we consider Born-von-Kármán FCs in the context of the embedded-atom-method
formalism. We first discuss the relationship of BvK FCs to the EAM formalism. We then utilize
vibrational spectra from K, Fe, and Au to explore how the BvK – EAM relationship can be useful
in evaluating the suitability of a given EAM model for modeling vibrational spectra.

A. BvK force constants

Experimental dispersion curves are commonly fit to extract what are known as Born-von-Kármán
FCs, which we now briefly describe.23,24 First, one assumes the equilibrium position of one partic-
ular atom is located at the origin. Owing to the symmetry of the lattice, there is a minimal set of
parameters that are required to describe all of the FCs between the atom at the origin and all of
the atoms in a particular neighboring shell. These parameters are often taken to be the BvK FCs.
For example, in a bcc lattice there are two independent BvK FCs (α1

1 and β1
1) that can be used

to describe the interactions between the atom at the origin and any atom in the first neighboring
shell. Generically, the BvK force-constant matrix bvkKk for the atom in the kth shell located at
1
2a0(hkx, h

k
y , h

k
z) where hkx ≥ hky ≥ hkz is assumed (a0 is the lattice constant) is given by

bvkKk =

αk1 βk3 βk2
βk3 αk2 βk1
βk2 βk1 αk3

 . (49)
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TABLE I. Definitions of Born-von-Kármán force-constant matrices bvkKk for specific atoms in the first five
shells (k = 1 to 5) of bcc and fcc lattices.

Shell (k) atom (bcc) bvkKk (bcc) atom (fcc) bvkKk (fcc)

1 1
2
a0(1, 1, 1)

α1
1 β1

1 β1
1

β1
1 α1

1 β1
1

β1
1 β1

1 α1
1

 1
2
a0(1, 1, 0)

α1
1 β1

3 0

β1
3 α1

1 0

0 0 α1
3



2 1
2
a0(2, 0, 0)

α2
1 0 0

0 α2
2 0

0 0 α2
2

 1
2
a0(2, 0, 0)

α2
1 0 0

0 α2
2 0

0 0 α2
2



3 1
2
a0(2, 2, 0)

α3
1 β3

3 0

β3
3 α3

1 0

0 0 α3
3

 1
2
a0(2, 1, 1)

α3
1 β3

2 β3
2

β3
2 α3

2 β3
1

β3
2 β3

1 α3
2



4 1
2
a0(3, 1, 1)

α4
1 β4

2 β4
2

β4
2 α4

2 β4
1

β4
2 β4

1 α4
2

 1
2
a0(2, 2, 0)

α4
1 β4

3 0

β4
3 α4

1 0

0 0 α4
3



5 1
2
a0(2, 2, 2)

α5
1 β5

1 β5
1

β5
1 α5

1 β5
1

β5
1 β5

1 α5
1

 1
2
a0(3, 1, 0)

α5
1 β5

3 0

β5
3 α5

2 0

0 0 α5
3



The force-constant matrix for other atoms in the kth shell are readily determined from this matrix
via lattice symmetry.24,25 Specific BvK FC matrices for atoms in the first five shells of both bcc
and fcc lattices are given in Table I.23,24

So how are the BvK FCs related to the EAM FCs derived above? Referring to Table I, we see
(for example) that the xy component of bvkK3 (bcc) is designated β3

3 . The BvK FCs are defined
such that β3

3 is the force on the atom at the origin in the x direction when the atom located at
1
2a0(2, 2, 0) is displaced in the y direction a unit distance. Given (10), this means the BvK FCs
are the negative of our EAM FCs when the EAM force constants are applied to the appropriate
pair of atoms. For a bcc or fcc lattice we can thus directly use (41) and (42) to evaluate the BvK

TABLE II. First-shell through fifth-shell bcc-lattice Born-von-Kármán force-constants for a normalized
EAM model with interactions [φ̄(r) and f(r)] that extend to fifth-shell neighbors. The numbers in the
column labeled “Index” are used in part (e) of Figs. 1 and 2 to denote the particular BvK FC.

Shell Index Pair-potential FCs Embedding-energy FCs

1 1

2

α1
1p = 2

3
φ̄′
1/r1 + 1

3
φ̄′′
1

β1
1p = − 1

3
φ̄′
1/r1 + 1

3
φ̄′′
1

α1
1e = −F ′′[ 2

3
f ′
1

(√
3f ′

2 +
√

6f ′
3 + f ′

5

)
+ 6√

11
f ′
4

(
f ′
2 + 4

√
2

3
f ′
3 + 5

3
√
3
f ′
5

)]
β1
1e = F ′′[ 2

3
f ′
1

(√
3f ′

2 − f ′
5

)
− 2√

11
f ′
4

(
f ′
2 − 2

√
2f ′

3 −
√

3f ′
5

)]
2 3

4

α2
1p = φ̄′′

2

α2
2p = φ̄′

2/r2

α2
1e = F ′′[ 4

3
(f ′

1)2 − 24√
33
f ′
1f

′
4 + 8

11
(f ′

4)2
]

β2
2e = −F ′′[ 4

3
(f ′

1)2 + 8√
33
f ′
1f

′
4 + 2

√
2f ′

3

(
f ′
2 + 2√

3
f ′
5

)
+ 40

11
(f ′

4)2
]

3 5

6

7

α3
1p = 1

2
φ̄′
3/r3 + 1

2
φ̄′′
3

α3
3p = φ̄′

3/r3

β3
3p = − 1

2
φ̄′
3/r3 + 1

2
φ̄′′
3

α3
1e = F ′′[ 2

3
(f ′

1)2 − 8√
33
f ′
1f

′
4 − 10

11
(f ′

4)2
]

α3
3e = −F ′′[ 2

3
(f ′

1)2 + 8√
33
f ′
1f

′
4 + 4√

3
f ′
2f

′
5 + 2(f ′

3)2 + 2(f ′
4)2
]

β3
3e = F ′′[ 2

3
(f ′

1)2 + 8√
33
f ′
1f

′
4 + (f ′

2)2 + (f ′
3)2 + 2(f ′

4)2
]

4 8

9

10

11

α4
1p = 2

11
φ̄′
4/r4 + 9

11
φ̄′′
4

α4
2p = 10

11
φ̄′
4/r4 + 1

11
φ̄′′
4

β4
1p = − 1

11
φ̄′
4/r4 + 1

11
φ̄′′
4

β4
2p = − 3

11
φ̄′
4/r4 + 3

11
φ̄′′
4

α4
1e = F ′′[ 2

3
f ′
1

(√
3f ′

2 +
√

6f ′
3 + f ′

5

)
+ 2√

11
f ′
4

(√
2f ′

3 + 2√
3
f ′
5

)]
α4
2e = −F ′′[ 1

3
f ′
1

(√
6f ′

3 + 2f ′
5

)
+ 2√

11
f ′
4

(
f ′
2 + 2

√
2f ′

3 + 4√
3
f ′
5

)]
β4
1e = F ′′[ 1

3
f ′
1

(√
6f ′

3 − 2f ′
5

)
+ 2√

11
f ′
4

(
f ′
2 −
√

2f ′
3 + 4√

3
f ′
5

)]
β4
2e = F ′′[ 1

3
f ′
1

(√
3f ′

2 +
√
3√
2
f ′
3

)
+ 3√

11
f ′
4

(
f ′
2 +
√

2f ′
3 + 2

3
√
3
f ′
5

)]
5 12

13

α5
1p = 2

3
φ̄′
5/r5 + 1

3
φ̄′′
5

β5
1p = − 1

3
φ̄′
5/r5 + 1

3
φ̄′′
5

α5
1e = F ′′[ 1

3
(f ′

1)2 − 2√
33
f ′
1f

′
4 − 10

11
(f ′

4)2
]

β5
1e = F ′′[ 1

3
(f ′

1)2 + 6√
33
f ′
1f

′
4 +
√

2f ′
2f

′
3 + 14

11
(f ′

4)2
]
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TABLE III. First-shell through fifth-shell fcc-lattice Born-von-Kármán force-constants for a normalized
EAM model with interactions [φ̄(r) and f(r)] that extend to fifth-shell neighbors. The numbers in the
column labeled “Index” are used in part (e) of Fig. 3 to denote the particular BvK FC.

Shell Index Pair-potential FCs Embedding-energy FCs

1 1

2

3

α1
1p = 1

2
φ̄′
1/r1 + 1

2
φ̄′′
1

α1
3p = φ̄′

1/r1

β1
3p = − 1

2
φ̄′
1/r1 + 1

2
φ̄′′
1

α1
1e = −F ′′[f ′

1

(√
2f ′

2 + 4√
3
f ′
3 + f ′

4

)
+ 4

3
f ′
3

(
f ′
3 +

√
3

2
f ′
4 + 3

√
3√
5
f ′
5

)
+ 3√

5
f ′
5

(√
2f ′

2 + 4
3
f ′
4

)]
α1
3e = −F ′′[f ′

1

(
2f ′

1 + 4√
3
f ′
3

)
+ 4

3
f ′
3

(√
6f ′

2 + 1
2
f ′
3 + 2

√
3f ′

4 +
√
3√
5
f ′
5

)
+ 18

5
(f ′

5)2
]

β1
3e = F ′′[f ′

1

(
f ′
1 +
√

2f ′
2 − 2√

3
f ′
3 − f ′

4

)
+ 2

3
f ′
3

(
5
2
f ′
3 +
√

3f ′
4 + 3

√
3√
5
f ′
5

)
− 1√

5
f ′
5

(√
2f ′

2 − 4f ′
4 − 1√

5
f ′
5

)]
2 4

5

α2
1p = φ̄′′

2

α2
2p = φ̄′

2/r2

α2
1e = F ′′[2f ′

1

(
f ′
1 − 6√

5
f ′
5

)
+ 4

3
(f ′

3)2 + 2
5
(f ′

5)2
]

α2
2e = −F ′′[f ′

1

(
f ′
1 + 4√

3
f ′
3 + 2√

5
f ′
5

)
+ 2
√

2f ′
2f

′
4 + 10

3
(f ′

3)2 + 9
5
(f ′

5)2
]

3 6

7

8

9

α3
1p = 1

3
φ̄′
3/r3 + 2

3
φ̄′′
3

α3
2p = 5

6
φ̄′
3/r3 + 1

6
φ̄′′
3

β3
1p = − 1

6
φ̄′
3/r3 + 1

6
φ̄′′
3

β3
2p = − 1

3
φ̄′
3/r3 + 1

3
φ̄′′
3

α3
1e = F ′′[f ′

1

(
f ′
1 + 2√

3
f ′
3 − 6√

5
f ′
5

)
+ 2

3
f ′
3

(
1
2
f ′
3 − 2

√
3√
5
f ′
5

)]
α3
2e = −F ′′[f ′

1

(
2√
3
f ′
3 + f ′

4

)
+ 2

3
f ′
3

(√
3√
2
f ′
2 + f ′

3 +
√
3

2
f ′
4 + 4

√
3√
5
f ′
5

)
+ 3√

5
f ′
4f

′
5

]
β3
1e = F ′′[f ′

1

(
1
2
f ′
1 − 1√

3
f ′
3 + f ′

4 + 1√
5
f ′
5

)
+ 1

3
f ′
3

(√
6f ′

2 + 5
2
f ′
3 −
√

3f ′
4 + 2

√
3√
5
f ′
5

)
− 1√

5
f ′
4f

′
5

]
β3
2e = F ′′[f ′

1

(
1
2
f ′
1 + 1√

2
f ′
2 + 1√

3
f ′
3 + 1√

5
f ′
5

)
+ 1

3
f ′
3

(√
6f ′

2 + 1
2
f ′
3 +
√

3f ′
4 + 6

√
3√
5
f ′
5

)
+ 2√

5
f ′
4f

′
5

]
4 10

11

12

α4
1p = 1

2
φ̄′
4/r4 + 1

2
φ̄′′
4

α4
3p = φ̄′

4/r4

β4
3p = − 1

2
φ̄′
4/r4 + 1

2
φ̄′′
4

α4
1e = F ′′[f ′

1

(
1
2
f ′
1 + 2√

3
f ′
3 − 2√

5
f ′
5

)
+ 2

3
f ′
3

(
1
2
f ′
3 − 3

√
3√
5
f ′
5

)
− 3

5
(f ′

5)2
]

α4
3e = −F ′′[ 4

3
f ′
3

(√
3f ′

1 + f ′
3 +

√
3√
5
f ′
5

)
+ 2(f ′

4)2
]

β4
3e = F ′′[f ′

1

(
1
2
f ′
1 + 4√

3
f ′
3 + 2√

5
f ′
5

)
+ (f ′

2)2

+ 4
3
f ′
3

(
1
4
f ′
3 + 3

√
3√
5
f ′
5

)
+ (f ′

4)2 + (f ′
5)2
]

5 13

14

15

16

α5
1p = 1

10
φ̄′
5/r5 + 9

10
φ̄′′
5

α5
2p = 9

10
φ̄′
5/r5 + 1

10
φ̄′′
5

α5
3p = φ̄′

5/r5

β5
3p = − 3

10
φ̄′
5/r5 + 3

10
φ̄′′
5

α5
1e = F ′′[f ′

1

(√
2f ′

2 + 4√
3
f ′
3 + f ′

4

)
+ 4

3
f ′
3

(
f ′
3 +

√
3

2
f ′
4

)
+ 1√

5
f ′
4f

′
5

]
α5
2e = −F ′′[f ′

1f
′
4 + 4

3
(f ′

3)2 + 1√
5
f ′
5

(√
2f ′

2 + 3f ′
4

)]
α5
3e = −F ′′[2f ′

1

(
1√
3
f ′
3 + 1√

5
f ′
5

)
+ 2

3
f ′
3

(
f ′
3 + 2

√
3f ′

4

)]
β5
3e = F ′′[f ′

1

(
1√
2
f ′
2 + 1√

3
f ′
3 + 3√

5
f ′
5

)
+ 1

3
f ′
3

(
3f ′

3 +
√

3f ′
4

)
+ 3√

5
f ′
5

(
1√
2
f ′
2 + 1

3
f ′
4

)]

FCs in terms of the EAM model. We note the pair-potential contribution comes from the second
term in (41) as only this term is nonzero when m 6= n.

We have evaluated the BvK FCs for both lattice types assuming a normalized EAM model
with functions φ̄(r) and f(r) that are nonzero out to the fifth shell of neighbors. The results
are displayed in Tables II and III. In the service of clarity we have broken up each FC into pair-
potential and embedding contributions: for example, α1

1 = α1
1p + α1

1e. As is evident in the tables

the key quantities for each shell are the first and second derivatives φ′k and φ′′k , respectively, of φ̄(r)
and the first derivative f ′k of f(r), where all derivatives are evaluated at the shell distances rk.
Our equations for the pair-potential contribution to the bcc FCs agree with previously published
expressions.26 As is evident in (42), the embedding part of the interaction between the nth and
mth atoms is mediated by other nearby atoms in the lattice, making the effective range of the
embedding interaction twice the distance of the range of f(r). This feature is manifest in the FCs
in Tables II and III. Notice, for example, in Table II terms with (f ′1)2 appear in the FCs for the
fifth bcc shell.

B. Vibrational Spectra of K, Fe, and Au

We now compare experimental and EAM-model-calculated vibrational spectra. Specifically, we
look at vibrations in K, Fe, and Au with an eye towards assessing which force constants are
most important for an EAM model to accurately predict. We chose to examine these three metals
because (i) they have all been extensively modeled using the EAM formalism, (ii) simple, transition,
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and noble metals are each represented, (iii) both bcc and fcc lattice types are included, and (iv)
high quality experimental dispersion curves – with concurrent BvK analysis – have been published
for all three metals.

We start by looking at the EAM models for K of Chantasiriwan and Milstein (CM),27 Johnson
and Oh (JO),16 and Wilson and Riffe (WR),17 which were previously compared in an EAM in-
vestigation of all five alkali metals.17 Parts (a), (b) and (c) of Fig. 1 illustrate the three defining
functions [φ̄(r), f(r), and F̄ (ρ)] of each model. It so happens each of these models is explicitly
normalized; hence φ̄(r) = φ(r) and F̄ (ρ) = F (ρ). As shown in (a) the pair potentials of the three
models are qualitatively similar, with an overall minimum between the first-neighbor distance r1
and second-neighbor distance r2. The direct interactions in the CM and WR models extend out
to the fifth shell of neighbors. The JO pair potential and atomic charge density both go to zero for
r somewhere between the second and third neighbor distances, and so the JO model only includes
direct interactions out to the second shell.

Experimental dispersion curves calculated using these three models are compared with the ex-
perimental data (solid circles) of Cowley et al.28 in part (d) of Fig. 1. All three models do quite
well near the zone center (q = 0); this feature can be attributed to to the use of elastic constants
in setting the parameters of each model. However, away from the zone center the three mod-
els become distinguished, with the WR model providing a uniformly accurate accounting of the
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FIG. 1. Potassium EAM models, dispersion curves, and BvK FCs. The effective potential energy φ̄(r),
atomic electron density f(r), and normalized embedding energy F̄ (ρ) are displayed in (a), (b), and (c),
respectively; the dotted, short-dashed, and long-dashed curves corresponds to the EAM models of CM,27

JO,16 and WR,17 respectively. In (d) EAM-model derived dispersion curves are compared with the ex-
perimental data of Cowley et al.,28 while in (e) EAM-model calculated BvK force constants are compared
with those extracted by Cowley et al. from the experimental dispersion-curve data displayed in (d).
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dispersion that the other two models lack.

Perhaps it is no surprise, then, that the BvK force constants calculated from the WR model
best match those directly derived from the experimental data, as is evident in part (e) of Fig. 1.
Interestingly, the magnitudes of the first three BvK FCs (α1

1, β1
1 , and α2

1) are significantly larger
than the remaining FCs. Indeed, the FCs with FC Index > 3 have magnitudes that are less than
10% of α2

1, the smallest of the first three FCs. These observations suggests an EAM model that
accurately predicts the first three FCs while minimizing the absolute values of the remaining FCs
might do very well at predicting K vibrational spectra.

We now move on to Fe. In a study that focused on the ability of EAM models to predict surface
relaxation, Haftel et al.29 introduced six different EAM models for Fe.30 Following their numbering
scheme, we present the three defining functions for all six models in (a), (b), and (c) of Fig. 2. As
can be see in (a) the effective pair potentials vary quite dramatically from one model to the next.
Models H3 and H5 include direct interactions out to the second shell of neighbors; the other four
models also include the third shell. The relative complexity of these pair potentials – compared to
those for K – is likely attributable to the fact that Fe is a transition metal as opposed to a simple
metal.
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FIG. 2. Iron EAM models, dispersion curves, and BvK FCs. The effective potential energy φ̄(r), atomic
electron density f(r), and normalized embedding energy F̄ (ρ) are displayed in (a), (b), and (c), respectively;
these curves corresponds to the six EAM models presented by Haftel et al..29 In (d) EAM-model derived
dispersion curves (from three Haftel et al. models) are compared with the experimental data of Minkiewicz
et al.,31 while in (e) EAM-model calculated BvK force constants are compared with those extracted by
Minkiewicz et al. from the experimental dispersion-curve data displayed in (d).
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Dispersion curves calculated using three of these models (H1, H5, and H6) are compared against
the experimental data of Minkiewicz et al.31 in part (d) of Fig. 2. The dispersion curves obtained
from the other models of Haftel et al. are similar to those shown here, and so have been omitted
for clarity. As with K, all models do a good job near the zone center, again owing to use of elastic
constants as input parameters in each model. Overall, model H6 is the most accurate reproducing
the experimental dispersion curves.

Our observations regarding the BvK FCs are largely the same as for K. First, the first three
FCs are again much larger than any of the remaining FCs, although the dominance is not quite as
pronounced in the present case. Second, these first three FCs are most accurately predicted by the
model – model H6 in this case – that most accurately predicts the experimental dispersion curves.

It is worth closely comparing the FC results for models H5 and H6. As is evident in Fig. 2(e),
model H6 predicts the first three FCs quite well, but does less well with the next four constants (α2

2

and the three third-shell FCs). In contrast, model H5 is much better overall at predicting the latter
four FCs, but it does miss the mark as far as the second FC goes. As Fig. 2(d) illustrates, model
H5 does a much poorer job than model H6 with the dispersion curves. These results emphasize the
importance of accurately predicting the first three BvK FCs. Furthermore, the results suggest that
one might be able to find second-neighbor models for both K and Fe that can accurately describe
vibrations in these two materials.
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FIG. 3. Gold EAM models, dispersion curves, and BvK FCs. The effective potential energy φ̄(r), atomic
electron density f(r), and normalized embedding energy F̄ (ρ) are displayed in (a), (b), and (c), respectively;
the dotted, short-dashed, and long-dashed curves corresponds to the EAM models of PR,32 CM,27 and
SH,33 respectively. In (d) EAM-model derived dispersion curves are compared with the experimental data
of Lynn et al.,34 while in (e) EAM-model calculated BvK force constants are compared with those extracted
by Lynn et al. from the experimental dispersion-curve data displayed in (d).
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Lastly, we consider vibrations in Au. In searching the literature we found six EAM models for
Au.19,27,32,33,35,36 In parts (a), (b), and (c) of Fig. 3 we plot the defining functions for the three
EAM models that do the best job of reproducing the experimental dispersion curves of Lynn et
al .34 The models are from CM,27 Pohlong and Ram (PR),32 and Sheng et al. (SH).33 The models
of PR and CM include direct interactions out to the third shell of neighbors, while those of SH
model extend to the fourth shell.

The dispersion-curve – BvK-FC correlations for Au are not unlike those for K and Fe. As
Fig. 3(d) shows, the CM and SH models do almost equally well at matching the experimental
dispersion curves of Lynn et al., and both are superior to the PR model. Not surprisingly, the CM
and SH models predict first-shell and second-shell FCs that are closest to those derived directly from
the experimental dispersion curves, as is observed in part (e) of Fig. 3. The relative magnitudes
of the BvK FCs for Au suggests a second-neighbor model might suffice to describe the interaction
in this metal.

It is instructive to consider the relative contributions of the (effective) pair potential and embed-
ding energy to the BvK FCs in these three metals. For all K and Fe EAM models considered here
the dominant contribution to the three largest FCs (α1

1, β1
1 , and α2

1) is from the pair potential.
Specifically, for these three FCs the embedding-energy contribution is less than 20% of that from
the pair potential, and in most cases the embedding-energy contribution is significantly less. For
Au the situation is slightly more complicated, which we illustrate in Fig. 4(b) using FCs from
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FIG. 4. Dispersion curves and BvK FCs for the SH model of Au.33 Dispersion curves calculated with and
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(a), respectively. The experimental data are again from Lynn et al .34 The breakdown of the BvK FCs
into (normalized) pair-potential and embedding-energy contributions are shown as the upward-pointing
and downward-pointing triangles in (b), respectively.
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the SH model. For all three Au models the two largest FCs (α1
1 and β1

3) are mainly due to the
pair-potential interaction. However, for the remaining first-shell FC (α1

2) and the two second-shell
FCs (α2

1 and α2
2) the embedding-energy contribution is significantly larger than that from the pair

interaction.
We can also assess the importance of the embedding energy by looking at dispersion curves.

This is demonstrated for Au in part (a) of Fig. 4, which shows dispersion curves calculated using
only the (normalized) pair potential (pp) from the SH model (as well as the dispersion curves –
previously shown in Fig. 3 – using the full SH model). As is evident in the figure, transverse modes
(T) are unaffected by the inclusion or exclusion of the embedding-energy derived FCs. However,
along all three high-symmetry directions the longitudinal mode (L) is poorly described if the pair-
potential is the sole description of the interactions.37 This result is intimately related to the fact
that a pair-potential description of Au cannot accurately predict all three elastic constants.38

VI. SUMMARY

In this paper we have studied vibrational dynamics within the EAM formalism. First, we have
derived equations for the dynamical matrix that can be used to model bulk and surface vibrations
in materials with multiple atoms per unit cell. Second, we have simplified these equations to
equations that are valid for looking at vibrations in cubic materials with a single atom basis, such
as bcc and fcc metals. Third, we have explored the relationship between the EAM formalism and
BvK FCs in bcc and fcc materials. Lastly, using K, Fe, and Au as examples, we have investigated
the relative importance of the various force constants in the ability of an EAM model to predict
vibrational dispersion curves.

Our results suggest that one might profitably use BvK FCs as direct inputs when building EAM
models. Typically these force constants are indirectly involved in EAM model construction via
the use of elastic constants and/or specific phonon frequencies. Indeed, this is true of all models
discussed above. Models CM and JO for K, H3 and H5 for Fe, and models PR and CM for Au
utilize elastic constants, but not phonon frequencies, while the WR model for K, models H1, H2,
H4, and H6 for Fe, and the SH model for Au also utilize phonon frequencies. In general, the models
that utilize both elastic constants and phonon frequencies predict the dispersion curves with more
accuracy, although this observation is not universal. Indeed, model H1 for Fe is the least accurate
of the six models for Fe. The potential advantage of directly using BvK FCs as inputs is that the
FCs determine the phonon frequencies throughout the Brillouin zone, not just near the zone center
and a few other frequencies. We are currently investigating the direct utilization of BvK FCs in
building EAM models.
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