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We use simple symmetry arguments suitable for undergraduate students to demonstrate that the

magnetic energy, forces, and torques between two uniformly magnetized spheres are identical to

those between two point magnetic dipoles. These arguments exploit the equivalence of the field

outside of a uniformly magnetized sphere with that of a point magnetic dipole, and pertain to

spheres of arbitrary sizes, positions, and magnetizations. The point dipole/sphere equivalence for

magnetic interactions may be useful in teaching and research, where dipolar approximations for

uniformly magnetized spheres can now be considered to be exact. The work was originally

motivated by interest in the interactions between collections of small neodymium magnetic spheres

used as desk toys. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4973409]

I. INTRODUCTION

Consider two permanent magnets of arbitrary shape. If
each magnet has a nonzero dipole moment, then the dipole
moments of these magnets will dominate their interactions at
separations that are large compared with their sizes, and
each magnet may be treated as if it were a point magnetic
dipole.1 Dipolar fields and forces are often used as the start-
ing point for analytical and numerical approximations of the
forces between permanent magnets of various shapes.2–7

A uniformly magnetized sphere produces a magnetic field
that is identical to its dipole field not just at large distances
but everywhere outside of the sphere.8,9 One is thus naturally
led to ask whether the forces and torques between two uni-
formly magnetized spheres are identical to those between
two point dipoles, independent of their separation. Here we
show that this is indeed the case.

This result has practical applications. Dipolar fields and
forces have been used to approximate the interactions among
assemblies of spherical nanoparticles10 and magnetic micro-
spheres.11 Our results show that these approximations are, in
fact, exact. In addition, small rare-earth magnetic spheres are
used both in and out of the classroom to teach principles of
mathematics, physics, chemistry, biology, and engineer-
ing.12–16 Our results enable simple dipole interactions to be
used to model the dynamical interactions between these
magnets.17,18

Previous calculations of the force between two uniformly
magnetized spheres have been carried out in three limiting
geometries: (i) for magnetizations that are perpendicular to
the line through the sphere centers,19 (ii) for parallel magnet-
izations that make an arbitrary angle with this line,20 and
(iii) for configurations with one magnetization parallel to
this line and the other in an arbitrary direction.21 All three
calculations yield forces that are identical to the force
between two point magnetic dipoles.22–27 Unlike these calcu-
lations, however, our calculations rely on simple symmetry
arguments and pertain to spheres of arbitrary sizes, positions,
magnetizations, and magnetic orientations.

The force between two dipoles is noncentral. That is, this
force is not generally directed along the line through the
dipoles. While other noncentral magnetic forces violate
Newton’s third law,28–30 we show that the paired forces
between magnetic dipoles obey this law. These forces there-
fore exert a net r� F torque on an isolated two-dipole

system. As we show below, this torque is canceled by paired
m� B torques, which are not equal and opposite. Thus, the
angular momentum is conserved.

II. POINT DIPOLE INTERACTIONS

In this section, we review the interactions between point
magnetic dipoles. The magnetic field at position r produced
by a point dipole m located at the origin is given by31,32

B m; rð Þ ¼
l0

4p
3m � r

r5
r�m

r3

� �
; (1)

for r ¼ jrj satisfying r> 0. This field can be obtained from
the scalar potential

u m; rð Þ ¼
l0

4p
m � r

r3
; (2)

via

Bðm; rÞ ¼ �$uðrÞ: (3)

Because $ � B ¼ 0, the scalar potential u satisfies Laplace’s
equation

$2u ¼ 0: (4)

We consider two dipoles, m1 and m2, that are, respec-
tively, located at positions r1 and r2. From Eq. (1), the field
produced by dipole mi is

BiðrÞ ¼ Bðmi; r� riÞ; (5)

where i¼ 1, 2, and where r� ri is the position vector rela-
tive to dipole mi (see Fig. 1). Accordingly, the field of mi

evaluated at the location of mj is

Bi rjð Þ ¼
l0

4p
3mi � rij

r5
ij

rij �
mi

r3
ij

 !
; (6)

where rij ¼ rj � ri is the position of mj relative to mi, and
rij ¼ jrj � rij.

The interaction energy between mj and the magnetic field
of mi is given by
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Uij ¼ �mj � BiðrjÞ: (7)

Inserting Eq. (6) into this expression gives

Uij ¼
l0

4p
mi �mj

r3
ij

� 3
mi � rijð Þ mj � rijð Þ

r5
ij

" #
: (8)

Meanwhile, the force of mi on mj follows from

Fij ¼ �$jUij; (9)

where $j is the gradient with respect to rj. Making use of
Eq. (8) then yields

Fij ¼
3l0

4pr5
ij

½ mi � rijð Þmj þ mj � rijð Þmi

þ mi �mjð Þrij � 5
mi � rijð Þ mj � rijð Þ

r2
ij

rij�: (10)

The first two terms in the square brackets are, respectively,
parallel to mj and mi. Consequently, Fij is not central—it is
not generally parallel to the vector rij between the dipoles.

Because of the symmetry between i and j, Eqs. (8) and
(10) imply that

U21 ¼ U12; (11)

and

F21 ¼ �F12; (12)

confirming that Newton’s third law applies to the magnetic
force between point magnetic dipoles, and ensuring that lin-
ear momentum is conserved in an isolated two-dipole
system.

We now investigate the torque sij of mi on mj, which we
write as having two contributions33

sij ¼ sA
ij þ sB

ij : (13)

The first arises from mj residing in the field of mi, which is
given by

sA
ij ¼ mj � BiðrjÞ: (14)

The sum of paired torques (arising from the dipoles residing
in the fields of the other)

sA
12 þ sA

21 ¼
3l0

4pr5
12

½ m1 � r12ð Þm2 � r12

þ m2 � r12ð Þm1 � r12� (15)

is generally not equal to zero. Therefore, unlike the paired
forces F12 and F21, the paired torques sA

12 and sA
21 are not gen-

erally equal and opposite. The second contribution to the tor-
que arises from the force of mi on mj

sB
ij ¼ rj � Fij; (16)

and because Fij is noncentral, the sum

sB
12 þ sB

21 ¼ r12 � F12 (17)

is also generally not equal to zero.

Equations (15) and (17) and a little algebra reveal that the
net torque on an isolated pair of dipoles vanishes identically

sA
12 þ sA

21 þ sB
12 þ sB

21 ¼ 0: (18)

The torque supplied by sA
12 and sA

21 therefore cancels the tor-
que supplied by sB

12 and sB
21, and the angular momentum is

conserved. Thus, an isolated dipole-dipole system does not
spontaneously rotate, and there is no exchange between
mechanical and electromagnetic momentum. Such exchanges
have been the subject of considerable study.29,34–36

III. FORCE BETWEEN SPHERES

We now come to the crux of this article, the force between
two uniformly magnetized spheres. We present four separate
arguments that show that the force between uniformly mag-
netized spheres is identical to the force between point
dipoles. While each proof is sufficient to show this equiva-
lence, each utilizes different concepts from mechanics and
electromagnetism, and each has pedagogical value.

As seen in Fig. 1, we take sphere i to have position ri,
radius ai, magnetization Mi, and total dipole moment

mi ¼
4

3
pa3

i Mi: (19)

Its magnetic field is given by Bi ¼ 2l0Mi=3 inside the
sphere (for jr� rij < ai) and by Eq. (5) outside the sphere.8,9

We treat Mi as spatially uniform and constant in time,
neglecting any demagnetization by external fields. This
assumption is appropriate for high coercivity materials.37,38

A. Newton’s third law

A five-step argument involving Newton’s third law shows
that the force between two spheres with uniform magnetiza-
tions M1 and M2 is identical to the force between two point
dipoles with corresponding magnetic moments m1 and m2,
located at the same positions and with the same magnetic
orientations as the spheres. Figure 2 illustrates the argument.
In Fig. 2(a), as in the preceding discussion, F12 represents
the force of dipole 1 on dipole 2. This force is produced by
the field B1 of dipole 1. In Fig. 2(b), sphere 1 produces the
same field B1, and therefore exerts the same force F12 on
dipole 2. Newton’s third law is shown in Fig. 2(c), giving the

Fig. 1. Diagram showing two uniformly magnetized spheres with positions

r1 and r2, radii a1 and a2, magnetizations M1 and M2, and paired non-

central magnetic forces F12 and F21. Also shown are an arbitrary position

vector r and the relative position vectors r� r1; r� r2, and r12 ¼ r2 � r1.

The same diagram applies for the forces between two point dipoles if

spheres M1 and M2 are replaced by dipoles m1 and m2 at the same

locations.
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force F21 ¼ �F12 of dipole 2 on sphere 1. This force is pro-
duced by the field B2 of dipole 2. Sphere 2, as shown in Fig.
2(d), produces the same field B2 as dipole 2 (outside of
sphere 2), and therefore exerts the same force F21 on sphere
1. Lastly, to complete the argument, we again apply
Newton’s third law to show that the force F12 ¼ �F21,
shown in Fig. 2(e), of sphere 1 on sphere 2 is identical to the
force of dipole 1 on dipole 2 [Fig. 2(a)].

B. Direct integration

The force between two uniformly magnetized spheres can
be determined by first integrating the energy density �Mj � Bi

associated with sphere j sitting in the magnetic field Bi, giving
the total interaction energy

Uij ¼ �
ð

j

Mj � Bi dV ¼ �Mj �
ð

j

Bi dV: (20)

Here, the integral is over the volume of sphere j and the sec-
ond equality exploits the uniformity of Mj. If all sources of a
magnetic field lie outside a particular sphere, then the spatial
average of the field over the sphere is given by the value of
the field at the sphere center;39 thusð

j

Bi dV ¼ 4

3
pa3

j Bi rjð Þ: (21)

Equations (19)–(21) give Uij ¼ �mj � BiðrjÞ, which repli-
cates Eq. (7). Thus, the energy of interaction between the
two spheres is identical to the energy of interaction between
two point dipoles. The associated force Fij ¼ �$jUij of
sphere i on sphere j is therefore identical to the
force between two point dipoles, and obeys Newton’s third
law.

C. Field energy

We can also show the force equivalence by integrating the
magnetic energy density B2=2l0 over all space, giving the
total energy

U r1; r2ð Þ ¼
1

2l0

ð
B1 þ B2ð Þ2 dV

¼ 1

2l0

ð
B2

1 þ 2 B1 � B2 þ B2
2

� �
dV: (22)

Because the magnetic energy of a single dipole does not
depend on its location in space, the self-energy integrals
ð2l0Þ�1 Ð B2

i dV do not depend on ri. Therefore, the force
Fij ¼ �$jU on sphere j depends only on the interaction
energy

Uint ¼
1

l0

ð
B1 � B2 dV

¼ 1

l0

ð
1

þ
ð

2

þ
ð

outside

� �
$u1 � $u2 dV; (23)

where we have inserted Eq. (3), and we have separated the
integral over all space into integrals over sphere 1, sphere 2,
and the region outside of both spheres.

For the integral over sphere 1, we use r2u2 ¼ 0 and the
divergence theorem to writeð

1

$u1 � $u2 dV ¼
ð

1

$ � ðu1$u2ÞdV

¼
ð

S1

u1$u2 � n̂1 dA; (24)

where S1 denotes the integral over the surface of sphere 1,
and n̂1 is the unit vector directed normally outward from the
sphere’s surface. The quantity u1$u2 is continuous across
this surface, and the surface values of u1 and u2 are identical
to the potentials of point dipoles. Therefore, the integral over
sphere 1 is the same as it would be if the spheres were
replaced by equivalent point dipoles. Similarly, the integral
over sphere 2 is the same as for equivalent point dipoles.
Because the fields outside of both spheres match the fields of

Fig. 2. Diagram illustrating the five steps of the Newton’s third law argu-

ment showing that the force between two uniformly magnetized spheres is

identical to the force between two point dipoles.
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equivalent point dipoles, all three integrals in Eq. (23) are
the same for point dipoles as for uniformly magnetized
spheres. Therefore, the force Fij ¼ �$jUint must also be the
same.

D. Stress tensor

The total force on an object can be calculated by integrat-
ing the Maxwell stress tensor over an arbitrary surface sur-
rounding the object.40,41 The magnetic stress tensor depends
only on the magnetic field. The field outside a uniformly
magnetized sphere is the same as the field of an equivalent
point dipole located at its center. The total field produced by
and outside of two uniformly magnetized spheres, and the
associated stress tensor, is the same as that of two point
dipoles. Therefore, the force between spheres must be the
same as the force between point dipoles.

IV. TORQUE BETWEEN SPHERES

Here, we calculate the torque sij of sphere i on sphere j.
This torque has two contributions, as before. The first arises
from sphere j residing in the field of sphere i and can be
obtained by integrating the torque density Mj � Bi over the
volume of sphere j, giving

sA
ij ¼

ð
j

Mj � Bi dV ¼Mj �
ð

j

Bi dV: (25)

Invoking Eqs. (19) and (21) gives sA
ij ¼ mj � BiðrjÞ, which

replicates Eq. (14). Thus, sA
ij between two uniformly magne-

tized spheres is identical to the torque between two point
magnetic dipoles.

The second contribution arises from the force of sphere i
on sphere j, which can be obtained from the interaction
energy density uij ¼ �Mj � Bi according to

Fij ¼ �
ð

j

$uij dV: (26)

This gives the same force as Fij ¼ �$jUij, with Uij given by
Eq. (7). The torque follows by integrating the torque density
r� ð�$uijÞ over the volume of sphere j to give

sB
ij ¼ �

ð
j

r� $uijðrÞdV: (27)

Rewriting this expression using the position r0 ¼ r� rj rela-
tive to the center of sphere j gives

sB
ij ¼ �

ð
j

ðr0 þ rjÞ � $uijðrÞdV

¼ �
ð

j

r0 � $0Wðr0ÞdV0 � rj �
ð

j

$uijðrÞdV; (28)

where Wðr0Þ ¼ uijðr0 þ rjÞ. Converting the first integral into
a surface integral givesð

j

r0 � $0WdV0 ¼ �
ð

j

$0 � ðWr0ÞdV0 (29)

¼ �
ð

Sj

n̂j � r0WdA0: (30)

Since r0 is parallel to the unit normal vector n̂j, their cross
product is zero and the integral vanishes. Combining Eqs.
(26) and (28) then gives

sB
ij ¼ rj � Fij; (31)

which is identical to Eq. (16). Thus, the torque associated
with the force on a uniformly magnetized sphere in a dipole
field is the same as the torque on the corresponding point
dipole. These results ensure that the net torque on an isolated
two-sphere system is zero, as seen earlier for point dipoles.

V. SUMMARY

We have demonstrated that the energy, forces, and torques
between two uniformly magnetized spheres are identical to
those between two point magnetic dipoles. This equivalence
immediately extends to uniformly polarized spheres and
point electric dipoles because the fields, forces, and torques
of electric dipoles have the same mathematical forms as their
magnetic counterparts, and the field outside of a uniformly
polarized sphere is identical to the electric dipole field.
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