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Long Wavelength Limit / Normal Modes 
 
Overview and Motivation:  Today we look at the long wavelength limit of the 
coupled-oscillator system.  In this limit the equations of motion for the coupled 
oscillators can be transformed into the partial differential equation known as the wave 
equation, which has wide applicability beyond the coupled-oscillator system  We also 
look at the normal modes and the dispersion relation for the coupled-oscillator system 
in this limit.   
 
Key Mathematics:  We again utilize the Taylor-series expansion. 
 
I.  Derivation of the Wave Equation 
A.  The Long Wavelength Limit (LWL) 
So why look at the coupled-oscillator system at long wave lengths?  Perhaps the main 
motivation comes from the fact that we are often interested in waves in systems 
where the wavelength is much longer than the distance between the coupled objects.  
For example, let's consider audible ( =ν  20 to 20,000 Hz) sound waves in a solid.  In a 
typical solid the speed of sound c  is ~2000 m/s, so audible frequencies correspond to 
wavelengths ( νλ c= ) between approximately 0.1 and 100 m.  These wavelengths are 
obviously much greater that the typical interatomic spacing d  of 2 × 10-10 m.  As we 
will see, one benefit of the long wavelength limit is that we will no longer need to 
refer to the displacement of each interacting object:  the index j  will be "traded in" 
for the continuous position variable x , so that we will be considering displacements 
as a function of x  and t . 
 
Let's consider the equation of motion for the j th oscillator (which can be any 
oscillator in the N coupled-oscillator system), 
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Let 's go ahead and trade in the discrete object index j  for the continuous position 
variable x  via jdx = , where d  is the equilibrium distance between objects in the 
chain.  Then we can rewrite Eq (1) as 
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Notice that the time derivative is now a partial derivative because we are now thinking 
of the displacement q  as a function of two continuous variables, x  and t .   
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Now because d  is a small parameter,1 let's Taylor series expand the two functions 
( )tdxq ,+  and ( )tdxq ,−  in a Taylor series in d  and d− , respectively, about the point 
x  [so in doing this expansion we are thinking about x  as some fixed point along the 
chain and ( )tdxq ,±  as a function of d± ].  The two Taylor series are 
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Keeping all terms up to order 2d  (we consider the validity of this approximation at 
the end of Sec. II) and substituting Eq. (3) into Eq. (2) gives us 
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This is the wave equation, which as you can see is a homogeneous, linear, second-
order, partial differential equation.  There is one more thing we need to do, 
however, in order to make Eq (4) more universally applicable.  The term 
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on the rhs of Eq. (5) is a combination of the fundamental parameters sk , m , and d  of 
the coupled-oscillator problem.  Let's define another constant ( ) 22 dmkc s=  so that we 
can more generically write the wave equation as 
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1 Technically, the small parameter in the long wave length limit is the ratio λd .  Generally, a parameter can 
only be large or small if it is unitless.  Otherwise, whether it is small or large (or somewhere in between) will 
depend upon the system of units being used.   
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B.  General Applicability of the Wave Equation 
The is the standard form of the wave equation that we will use in this class.  As we 
shall see in further study of the wave equation, c  is the propagation speed of waves 
described by Eq. (6).   
 
Now if Eq. (6) were only useful for studying the long wavelength motion of the 
coupled-oscillator system, it really wouldn't be that interesting.  Fortunately, it is 
applicable in a wide variety of situations, including sound waves in fluids and solids, 
transverse waves on a string, and electromagnetic waves in vacuum (or other 
nondispersive media).  In each situation the constant 2c  can be related to the 
underlying physics.  For example, for transverse waves on a string, µτ=2c , where τ  
is the tension in the string and µ  is the mass per unit length of the string.   
 
II.  LWL of Coupled Oscillator Solutions 
A.  Normal Modes 
Let's now look at the coupled-oscillator normal modes in the LWL.  As we discussed 
in Lecture 6, we can write the normal-mode solutions (indexed by n ) as a function of 
x  and t  as 
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where the wave vector is given by 
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and the dispersion relation is 
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As written, Eqs. (8) and (9) are expressed in terms of the fundamental (or microscopic) 
parameters d ,ω~ , and N of the coupled-oscillator problem.  Let's see if we can re-
express them in terms of c  and other more generic (or macroscopic) parameters.  
Well, the first thing to notice is that the length L  of the system (a more generic, 
macroscopic parameter) can be written in terms of the fundamental parameters N  
and d  as ( )dNL 1+= .  The wave vector can thus be simply expressed as 
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Well, what about Eq. (9), the dispersion relation?  It is not yet clear what to do with ω~  
in order to obtain a more generic description.  This is where the long wavelength limit 
comes into play again.  Recall that the wave vector is related to the wavelength via 
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This allows us to write Eq. (9) as 
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Now, the long wavelength limit is exactly the limit 1<<λd .  Thus, in this limit we can 
replace the sine function by its (very small) argument, so that Eq. (12) can be 
expressed as 
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And now, using cd =ω~  and Eq (11), we have the long-wavelength-limit dispersion 
relation 
 
 ( ) nn ckk =ω . (14) 
 
Or, in a more general form that is applicable to any harmonic wave described by the 
wave equation (not just the normal modes for the coupled-oscillator system where 

nkk =  is discrete), 
 
 ( ) ckk =ω . (15) 
 
So we see that, because c  is constant, the dispersion relation for waves described by 
the wave equation is linear vs k .  Looking back at the dispersion curves for the 
coupled-oscillator system that are plotted in the Lecture 6 notes, you should notice 
that for small Nn kk  (which is equivalent to small nd λ ) that the dispersion curves are 
indeed linear vs nk .  (The small wave vector limit is thus the same as the long 
wavelength limit.) 
 
Putting all of this together, we can write the normal modes [Eq. (7)] for long 
wavelengths as 
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A remark about the normal modes should be made at this point. The function 

( )Lxnπsin  in Eq. (16) came about because of the boundary conditions, which we can 
now express as ( ) 0,0 =tq  and ( ) 0, =tLq  [You can check that these boundary 
conditions are indeed satisfied by ( )Lxnπsin ].  For other boundary conditions we 
would generally get some linear combination of ( )xknsin  and ( )xkncos , and perhaps 
also different allowed wave vectors nk  (or equivalently, allowed wavelengths nλ ).2   
 
B.  Neglect of Higher Order Terms in Equation of Motion in the LWL 
Now that we have an expression for the normal modes in the LWL, we can check to 
see that it is OK to neglect the terms in Eq. (3) that are of order higher than 2d .  The 
first thing to notice is that all the odd terms in Eqs. (3a) and (3b) cancel each other 
when inserted into Eq. (2).  Thus we need only consider the even terms.  The second 
thing to notice is that for even m  
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{This is obtainable using Eq. (16) in Eq. (3) [in Eq. (2)]}.  Therefore, for example, the 
ratio of the 4th order term to the 2nd order term, neglecting numerical factors, is given 
by 22 λd , which is much smaller than 1.  Thus, we are justified in neglecting this term 
(and other higher order terms, which have an even smaller ratio) in Eq. (3), the Taylor 
series expansion of the equations of motion.   
 
III.  The Continuum Limit vs the Long Wavelength Limit 
Recall that for N  oscillators that there are N  normal modes.  Well, we have been 
clever and gotten rid of N  in all of our expressions.  So what do we do?  It depends 
upon the situation that is being described by the wave equation.  As a long wavelength 
limit of a truly discrete system, one must simply make sure that the waves being 
described have wavelengths that are much longer that the appropriate interparticle 
spacing.  However, there are times when the wave equation is used, such as in 
electromagnetism, where there are no underlying oscillators and thus no underlying 
spacing d  to be compared with the wavelength.  In those cases, where the wave 
equation is believed to describe all waves, the long wavelength limit is replaced by a 
more mathematically technical limit, known as the continuum limit.  In this limit one 

                                                 
2 Think about the normal modes for sound waves in a pipe that is open on both ends vs a pipe with one end 
open and one end closed.  This is explored in Exercise 7.4. 
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actually takes the limit 0→d .  The result is that the terms in Eq. (3) of order greater 
than 2d  can be neglected exactly.  Furthermore, in the limit 0→d  (for fixed L ), we 
see that because ( )dNL 1+= , this limit is equivalent to ∞→N .  That is, in the 
continuum limit the number of normal modes becomes infinite.  From here on out, 
when working with normal modes of the wave equation we will assume that there are, 
indeed, an infinite number of normal modes.  (More details on the continuum limit 
can be found in Dr. Torre’s text, FWP.) 
 
Exercises 
 
**7.1  The wave equation for NN and NNN coupled oscillators 
(a)  Analogous to Eq, (2), write down the equation of motion for the coupled-
oscillator system that has both NN and NNN springs (see the Lecture 6 notes).   
(b)  Similar to what was done here for the NN system, take the long wavelength limit 
of this equation of motion and derive the wave equation. 
(c)  For this system, what is the constant 2c  in terms of the fundamental parameters 
ω~ , ω′~ , and d ?   
 
*7.2  The long wavelength limit 
(a)  Derive Eq. (17), which follows from Eq. (16), the expression for the normal 
mode solutions ( )( )txq n , .   
(b)  Given your result in (a), Show that the ratio of the 4d  to 2d  terms in the Taylor 
series expansion of ( ) ( ) ( )[ ]tdxqtxqtdxq ,,2, −+−+ , which appears on the rhs of the 
equation of motion as expressed in Eq. (2), is equal to ( ) ( )22

12
1 2 nd λπ− . 

(c)  Thus argue that, compared to the 2d  term, the 4d  term can be neglected in the 
equation of motion in the LWL.   
 
*7.3  Referring to the Lecture 6 notes, show for large N  that the ratio Nn kk  is equal 
to nd λ2 , thus proving that the long-wavelength and small-wave-vector limits are 
equivalent.   
 
**7.4  Normal modes for an open-closed pipe 
Consider the following general form for a 1D standing wave, 
 

( ) ( ) ( )[ ] ( )φω ++= tkxbkxatxqS sincossin, . 
 
(a)  Show that this is a solution to the wave equation only if ω  and k  are related by 
the dispersion relation ck±=ω .   
(b)  Let's assume that the normal modes for sound waves in a pipe are of the form 

( )txqS ,  given above.  For a pipe that is open on one end (at 0=x ) and closed on the 
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other (at Lx = ) the appropriate boundary conditions are ( ) 0,0
=

∂
∂
x
tq and ( ) 0, =tLq .  

Starting with the above general form  of the standing wave solutions ( )txqS , , use the 
0=x  boundary condition to show that the normal modes of this system have the 

more specific form 
 

( ) ( ) ( )φ+= cktkxbtxq sincos, . 
 

(c)  Further, using the Lx =  boundary condition, show that the wave vector k  can 
only take on the discrete values ( )Lnkn 2π=  (where K,5,3,1=n ). [Notice that these 
wave vectors are not the same as the normal-mode wave vectors for the coupled 
oscillator problem, given by Eq. (10)].  Thus show that the normal modes of the 
open-closed pipe can be written as 
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(d)  Thus show that the wavelengths of the normal modes of the open-closed pipe are 

nLn 4=λ .   


