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Traveling Waves, Standing Waves, and the Dispersion Relation 
 
Overview and Motivation:  We review the relationship between traveling and 
standing waves.  We then discuss a general relationship that is important in all of wave 
physics – the relationship between oscillation frequency and wave vector – which is 
known as the dispersion relation. 
 
Key Mathematics:  We get some more practice with trig identities and eigenvalue 
problems.   
 
I.  Traveling and Standing Waves  
A.  Basic Definitions 
The simplest definition of a 1D traveling wave is a function of the form 
 
 ( ) ( )ctxgtxq −=,1  (1a) 
 
or 
 
 ( ) ( )ctxftxq +=,2 , (1b) 
 
where c  is some positive constant.1  The constant c  is the speed of propagation of 
the wave.  The wave in Eq. (1a) propagates in the positive x direction, while the wave 
in Eq. (1b) propagates in the  negative x direction.  Now the functions g  and f  in Eq. 
(1) can essentially be any (well behaved) function, but often we are interested in 
harmonic waves.  In this case the functions g  and f  in Eq. (1) take on the form 
 

 ( ) ( ) 



 +−=− φ
λ
π ctxActxg 2sin  (2a) 

 
and 
 

 ( ) ( ) 



 ++=+ ψ
λ
π ctxBctxf 2sin , (2b) 

 
where A  and B  are the amplitudes, φ  and ψ  are the phases, and λ  is the 
wavelength of the wave.  Now the x - and t -dependent parts of the sine-function 
arguments are often written as txk ω± , and so we can identify the wave vector k  as 

                                                 
1 As we shall see, the functions in Eq. (1) are the general solutions to the wave equation, which we will study in 
short order.  However, we shall also see, when we study the Schrödinger equation, that not all waves have these 
functional forms.   
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λ
π2

=k  (3) 

 
and the angular frequency ω  as2 
 

 
λ
πω c2

= . (4)  

 
You should recall from freshman physics that the speed c , frequency ( )πων 2=  and 
wavelength λ  are related by λν c= .   
 
So what is a standing wave?  Simply put, it is the superposition (i.e., sum) of two 
equal-amplitude, equal-wavelength (and thus equal-frequency) harmonic waves that 
are propagating in opposite directions.  Using Eqs. (2), (3), and (4) (and for simplicity 
setting 0==ψφ ) we can write such a wave as 
 
 ( ) ( ) ( )[ ]tkxtkxAtxqS ωω ++−= sinsin, . (5) 
 
With a bit of trigonometry, specifically the angle-addition formula for the sine 
function, Eq. (5) can be rewritten as 
 
 ( ) ( ) ( )tkxAtxqS ωcossin2, =  (6) 
 
So instead of being a function of tkx ω± , a standing wave is a product of a function of 
x  and a function of t .  Equation (6) also show us how to identify the wave vector k  
and angular frequency ω  in the case of an harmonic standing wave:  whatever 
multiplies x  is the wave vector and whatever multiplies t  is the angular frequency. 
 
In fact, for nonharmonic standing waves it is probably safe to define a standing wave 
as a wave where all parts of the system oscillate in phase, as is the case of the 
harmonic standing wave defined by Eq. (6).   
 
B.  Connection to the Coupled Oscillator Problem 
Let's now go back to the coupled oscillator problem, and reconsider the n th normal-
mode solutions to that problem, which we previously wrote as 
 
                                                 
2 Do not confuse this definition of ω  (the angular frequency of the wave) with our earlier definition of ω~  

(= mk ) that arises when discussing single or coupled harmonic oscillators.  It is easy to confuse the two 

definitions because for a single harmonic oscillator ω~  is also an angular frequency.   
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where ( )[ ]12sin~2 +=Ω Nnn πω .  As we mentioned last time, these modes are essentially 
standing waves.  Let's see that this is the case by writing Eq. (7) in the form of Eq. (6).  
After we do this, let's also identify the wave vector k  and frequency ω  for the normal 
modes.  As written, Eq. (7) explicitly lists the motion of each individual oscillator.  But 
the n th normal mode can also be written as a function of object index j  and time t  
as 
 

 ( )( ) ( )ti
n

ti
nn

nn eBeAj
N
ntjq Ω−Ω +








+
=

1
sin, π , (8) 

 
where j  labels the oscillator.  Although j  is a discrete index, we have included it in 
the argument of the normal-mode function because it is the variable that labels 
position along the chain.  Equation (8) is almost in the form of Eq. (6).  In fact, if we 
take the specialized case of ABA nn == , where A  is real, then Eq. (8) can be written 
as 
 

 ( ) ( ) ( )tj
N
nAtjq nn Ω








+
= cos

1
sin2, π . (9) 

 
This is very close, except in Eq. (6) the position variable is the standard distance 
variable x , while in Eq. (9) we are still using the object index j  to denote position.  
However, if we define the equilibrium distance between nearest-neighbor objects as d , 
then we can connect x  and j  via jdx = , and so we can rewrite Eq. (9) as 
 

 ( ) ( ) ( )t
d
x

N
nAtxq nn Ω








+
= cos

1
sin2, π . (10) 

 
Now, remembering that whatever multiplies x  is the wave vector k  and that whatever 
multiplies t  is the angular frequency ω , we have  
 

 
dN

nk 1
1+

=
π  (11) 
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and  
 

 ( )






+

=Ω=
12

sin~2
N
n

n
πωω  (12) 

 
for the coupled-oscillator standing waves. 
 
III.  Dispersion Relations 
A. Definition and Some Simple Examples 
Simply stated, a dispersion relation is the function ( )kω  for an harmonic wave.  For 
the simplest of waves, where the speed of propagation c  is a constant, we see from 
Eqs. (3) and (4) that their dispersion relation is simply  
 
 ( ) ckk =ω . (13) 
 
That is, the frequency ω  is a linear function of the wave vector k .  We also see from 
Eq.(13) that the ratio kω  is simply the propagation speed c .  As we will discuss in 
more detail in a later lecture, the ratio kω  is technically known as the phase 
velocity.3   
 
Now you may be thinking, what is the big deal here? – Eq. (13) is so simple, what 
could be interesting about it?  Now it is simple if the phase velocity c  is independent 
of k .  But this is usually not the case.  Recall, for example, the propagation of light in 
a dielectric medium (such as glass) where the index of refraction ccn 0=  (where 0c  is 
the speed of light in a vacuum) depends upon the wavelength (and thus the wave 
vector).4  In this case Eq. (13) becomes 
 

 ( ) ( ) kkn
ck 0=ω . (14) 

 
The dispersion relation now has the possibility of being quite interesting.   
 
Another example of an interesting, nonlinear dispersion relation is found in modern 
physics.  In your modern-physics class you (hopefully!) studied solutions to the 
Schrödinger equation.  The wave (function) that describes a free particle (one with no 

                                                 
3 OK, it should probably be called the phase speed, but it isn't.  Sorry, even in physics all quantities are not logically 
named. 
4 The dependence of the phase velocity on wave vector leads to dispersion of light by a prism, for example.  Thus 
the name "dispersion relation". 
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net force acting on it) propagating in the x  direction with momentum p  can be 
written as 
 

 ( ) 







−

=
t

m
pxpi

p etx hh 2
0

2

, ψψ , (15) 
 
where m  is the mass of the particle and h  is Planck's constant.  Comparing Eq. (15) 
with Eq. (5), for example, we identify the wave vector 
 

 
h

pk =  (17) 

 
and the frequency 
 

 
hm

p
2

2

=ω . (18) 

 
The dispersion relation is thus 
 

 ( )
m
kk

2

2h
=ω . (19) 

 
Notice that this dispersion relation is quadratic in the wave vector k .  As we will study 
later, a nonlinear dispersion relation has profound consequences for the propagation 
of a localized wave (often called a pulse or wave packet) associated with that 
dispersion relation.  First, for a nonlinear dispersion relation the propagation speed of 
the pulse will not be equal to the phase velocity.  Second, a nonlinear dispersion 
relation typically leads to the spreading of the pulse with time.  (This spreading is also 
known as dispersion!) 
 
B.  Connection to the Coupled Oscillator Problem 
So what is the dispersion relation for our coupled oscillator system?  By combining 
Eqs. (11) and (12) we see that we can write 
 

 ( ) 





= kdk

2
sin~2ωω  (20) 

 
This is another example of a nonlinear dispersion relation.   
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Let's make some graphs of the dispersion relation for the coupled-oscillator system.  
Now Eq. (20) is correct, but not particularly useful for doing this.  That is because for 
the coupled oscillator problem k  can only have the discrete values 
 

 
dN

nkn
1

1+
=

π , (21) 

 
where Nn ,,3,2,1 K= , are allowed [see Eq. (11)].5  So we must be a bit clever here.  
Let's rewrite Eq. (12) as 
 

 ( ) 







+

=







+
=

N

n
n k

k
N
N

N
n

N
Nk

12
sin~2

12
sin~ πωπωω . (22) 

 
(The rhs follows because nkn ∝ .  Thus, Nn kkNn = .)  This makes Eq. (12) look like 
the dispersion relation that we want, but in constructing a graph, we can simply plot 
ω  vs Nn  (keeping in mind that Nn  is the same as Nn kk .)  The following graph 
plots ( ) ωω ~

nk  vs Nn kk  for 5=N .6 
 

 
For 5=N , nk  is obviously a discrete variable (as the graph shows), but there are times 
when it is useful (and appropriate) to think of nk  as a continuous variable (even if it 

                                                 
5 Of course you already knew this because of your familiarity with standing waves on a string (although in that case 

∞=N  -- more on this later!) 
6 When making a graph, it is often useful to use normalized, unitless quantities for the axes.  This makes the graph 
more widely applicable. 
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isn't).  To see when this is the case, let's consider Eq. (22) for larger N , as illustrated 
in the next figure, where the dispersion relation is plotted for 50=N .  The key 
observation here is that that the spacing between adjacent values of Nn kk  becomes 
smaller as N  becomes larger.  In fact, it is not hard to show that the relative spacing 
between allowed values of k  is given by 
 

 
Nk

k
N

1
=

∆ . (20) 

 
For very large N , say 2310=N  (as one might be interested if one were modeling 
atoms in a solid as coupled oscillators), the spacing Nkk∆  is indeed truly negligible, 
and one is justified in thinking of k  as continuous.   
 
 
III.  Interparticle Interactions and Dispersion Relations 
Now you may think that our model of coupled oscillators is nothing more than an 
exercise in classical mechanics.  This model, however, contains the essence of 
vibrational dynamics in solid-state materials.  How can this be?  Surely the interactions 
between atoms in a solid are much more complicated than the quadratic potentials of 
a bunch of springs.  Yes, that is true.  However, let's think back to the first lecture 
where we discussed the Taylor-series expansion of an arbitrary potential energy 
function near a minimum.  We found out that if the object does not stray too far from 
equilibrium, then the potential is effectively quadratic – that is, the object is pulled 
back towards equilibrium as if it were attached to a spring.  Well, the same thing is 
true for atoms in a solid.  At most temperatures they never stray too far from their 
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equilibrium positions.  What this means is that a model where the atoms are hooked 
to other atoms with springs is, indeed, a pretty good model.  Thus, when thinking of 
vibrations (i.e., oscillations) of atoms (really, the nuclei because the nucleus contain 
nearly all the mass of an atom) we can think of the nuclei as if they are attached to 
other nuclei with springs, as the picture above suggests. 
  
Now because the nuclei are essentially connected together with springs, there is a set 
of normal modes for the system.  Further, as with our case of couple oscillators, there 
is a dispersion relation associated with the normal modes of vibration. In fact, for 
every wave vector (which is indeed a vector k  because of the 3 dimensional nature of 
the solid) there are three normal modes (because each nucleus can vibrate in three 
dimensional space).   
 
With regards to solid-state physics, the most important thing about dispersion 
relations is that they can be measured (and thus compared with theory).  The figure  
on the next page shows both experimental (the discrete points) and calculated (the 
continuous lines) dispersion curves for Li. 
 
For the wave-vector directions of propagation shown in the graph, there are two 
normal modes with transverse polarization and one with longitudinal polarization for 
each value of k , although along the (100) and (111) directions the two transverse  
modes are degenerate (have the same frequency).  Notice that along the (100) and 
(110) directions that the dispersion curves are similar to the dispersion curve for our 
simple 1D coupled oscillator system.  So what is the point?  Well, the measured curves 
provide insight into the microscopic interactions between the atoms:  in order to 
theoretically calculate the dispersion curves one must know which atoms are coupled 
with springs and what the spring constants are for the different springs. 
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To get a better sense of how the interactions between atoms affect the dispersion 
curves, let's go back to our simple 1D system and modify it by adding some more 
springs to see how the dispersion curve is affected.  In particular, let's add some next-
nearest-neighbor (NNN) springs in addition to the nearest-neighbor (NN) springs 
that we already have.  This modification is illustrated in the following picture.   
 

 
Of course, so that we have something to play with, we let the NN and NNN springs 
have different spring constants:  we continue to let the NN springs have spring 
constant sk  while the NNN springs have spring constant sk′ .  (Of course, this is what 
we would expect:  why should NN's and NNN's have the same interactions?) 
 

…
…

…

 

Li 

WAVE VECTOR ( maxq ) 

[q00] [qqq] [qq0] 



Lecture 6 
  Phys 3750 

D M Riffe -10- 2/1/2013 

The following picture shows the dispersion curves that result when these NNN 
springs are added.   (These curves are for large N  and so are plotted as continuous 
functions.)  Notice that the dispersion curves are quite sensitive to the value of sk′ , the 
spring constant for the NNN interaction.  Also notice that the dispersion curve in the 
graph on the right is similar to the dispersion curve for the longitudinal mode in Li 
along the (111) direction.   
 

 
 
 
Exercises 
 
*6.1  Using the appropriate trig identities, derive Eq. (6) from Eq. (5).  
 
*6.2  Under the condition ABA nn == , show that Eq. (9) is equivalent to Eq. (8). 
 
*6.3  Show that the superposition (sum) of the two standing waves ( ) ( )tkxA ωsinsin  
and ( ) ( )tkxA ωcoscos  is a traveling wave.  What is the direction of propagation of this 
traveling wave? 
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**6.4  Linear chain with NN and NNN interactions.  Here you will find the 
normal-mode frequencies for a linear chain of coupled oscillators with both NN 
springs ( k ) and NNN springs ( k ′ ). 
(a)  Write down the equation of motion for the j th oscillator for this system.  
Consulting the picture on p. 9 may be helpful. 
(b)  Analogous to the steps in Sec. II of the Lecture 5 notes, find the normal-mode 
frequencies nΩ  and show that they can be written as 
 

( )
21

2
2

2 sin~
~

2
sin2~


















 ′

+





±=

Ω ±
n

nn φ
ω
ωφ

ω
 

 
where mks=ω~ , mks′=′ω~ , and ( )1+= Nnn πφ . 
(c)  For this problem plot (using computer software) the dispersion curve ( ) ωω ~

nk  vs 
Nn kk  for 1=m , 1=sk , and =′sk  0.2, 0.5, and 0.8.  You may assume that there are 

many oscillators so that your dispersion curves are effectively continuous. 
 
*6.5  Show that the spacing between allowed wave vectors for the coupled oscillator 
problem is given by Eq. (20).   


