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Linear Chain / Normal Modes 
 
Overview and Motivation:  We extend our discussion of coupled oscillators to a 
chain of N  oscillators, where N  is some arbitrary number.  When N  is large it will 
become clear that the normal modes for this system are essentially standing waves.   
 
Key Mathematics:  We gain some more experience with matrices and eigenvalue 
problems. 
 
I.  The Linear Chain of Coupled Oscillators  
Because two oscillators are never enough, we now extend the system that we have 
discussed in the last two lectures to N  coupled oscillators, as illustrated below.  For 
this problem we assume that all objects have the same mass m  and all springs have 
the same spring constant sk .   
 
 

 
 
Our first goal is to find the normal modes of this system.  At the beginning we 
approach this problem in the same manner as for two coupled oscillators:  we find the 
net force on each oscillator, find each equation of motion, and then assume a normal-
mode type solution for the system. Let's consider some arbitrary object in this chain, 
say the j th object.  The force on this object will depend upon the stretch of the two 
springs on either side of it.  With a little thought, you should be able to write down 
the net force on this object as 
 
 ( ) ( )11 +− −−−−= jjsjjsj qqkqqkF , (1) 
 
or, upon simplifying, 
 
 ( )11 2 +− +−= jjjsj qqqkF . (2) 

01 =q  02 =q  
1q  2q  

m  ks 

… 
0=Nq

Nq
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You might worry that this equation is not valid for the first ( 1=j ) and last ( Nj = ) 
objects, but if we assume that the 0=j  and 1+= Nj  objects (the walls) have infinite 
mass so that 0q  and 1+Nq  are identically zero, then Eq. (2) applies to all N  objects.  
We shall refer to these two conditions, 00 =q  and 01 =+Nq , as boundary conditions 
(bc's) on the chain of oscillators.   
 
With the expression for the net force on each object we can write down the equation 
of motion (Newton's second law!) for each object as 
 
 ( ) 02~

11
2 =+−− +− jjjj qqqq ω&& , (3) 

 
where Nj ≤≤1  and, as before, mks=2~ω .  Notice that each equation of motion is 
coupled:  the equation of motion for the j th object depends upon the  displacement 
of both the ( 1−j ) and ( 1+j ) objects.   
 
II.  Normal Mode Solutions 
We now look for normal-mode solutions (where all masses oscillate at the same 
frequency) by assuming that1 
 
 ti

jj eqq Ω= ,0 . (4) 
 
If we substitute Eq. (4) into Eq. (3), after a bit of algebra the equations of motion 
become 
 
 ( ) 02~

1,0,01,0
2

,0
2 =+−+Ω +− jjjj qqqq ω  (5) 

 
Now, keep in mind that what we have here are N  equations of motion, one for each 
value of j  from 1 to N .  As in the two-oscillator problem, the set of equations can be 
expressed in matrix notation 
 

 























Ω=













































−
−−

−−
−

MMM

L

4,0

3,0

2,0

1,0

2

4,0

3,0

2,0

1,0

22

222

222

22

~2~00

~~2~0
0~~2~
00~~2

q
q
q
q

q
q
q
q

ωω
ωωω

ωωω
ωω

 (6) 

                                                 
1 We have slightly changed notation here.  We now write the amplitudes jq ,0  with a comma between the zero and 

the mass index so that terms such as 1,0 +jq  are unambiguous.   
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or 
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So, as before, finding the normal modes reduces to finding eigenvalues 2Ω  and 

eigenvectors 

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 [of the NN ×  matrix in Eq. (6)].  Recall that the eigenvalues are 

found by solving the (characteristic) equation that arises when we set the determinant 
of the NN ×  matrix in Eq. (7) to zero.   

0 10 20 30 40 50
0.2

0

0.2
LOWEST FREQUENCY EIGENVECTOR

EI
G

EN
V

EC
TO

R

0

0 10 20 30 40 50
0.2

0

0.2
SECOND LOWEST FREQUENCY

EI
G

EN
V

EC
TO

R

0

0 10 20 30 40 50
0.2

0

0.2
THIRD LOWEST FREQUENCY

POSITION (mass index)

EI
G

EN
V

EC
TO

R

0



Lecture 5  Phys 3750 

D M Riffe -4- 1/16/2013 

 
A.  Eigenvectors 
Now for N  any larger than 3 solving the characteristic equation for the eigenvalues 
and eigenvectors by hand is not advisable.  So let's turn to a computer mathematics 
program, such as Mathcad, and see what insight we can gain into this problem.  Given 
the matrix in Eq. (6) (with a specific value for 2~ω ), Mathcad can calculate the 
eigenvalues and eigenvectors of that matrix.  In the graphs on the previous page we 
plot the eigenvectors corresponding to the three lowest eigenvalues for the 50=N  
problem.  
 
The key thing to notice is that these eigenvectors look like standing waves (on a string, 
for example).  That is, as a function of position (i.e., mass index) j , the components 

jq ,0  of the eigenvector appear to be a sine function [which must equal zero at the ends 
of the chain ( 0=j  and 1+= Nj ) because of the bc's].   
 
This observation inspires the following ansatz for the eigenvectors 
 
 ( )jAq j φsin,0 = , (8) 
 
where A  is some arbitrary amplitude for this sine function (it could be complex 
because we are dealing with a complex form of the solutions), and φ  is some real 
number that will be different for each normal mode.2  Now Eq. (8) obviously satisfies 
the 00 =q  bc on the lhs of chain, but not necessarily the rhs bc 01 =+Nq .  To satisfy 
this bc we must have  
 
 ( )[ ] 01sin1,0 =+=+ NAq N φ , (9) 
 
which is true only for ( ) πφ nN =+1 , where n  is an integer.  That is, we must have 
 

 
1+

=
N
n

n
πφ  (10) 

 
where the integer n  labels the (normal-mode) solution.  Now because any integer n  in 
Eq. (10) produces a value for φ  that satisfies Eq. (9), it looks like nφ  can take on an 
infinite number of values; this seems to imply an infinite number of normal modes.  
Well, this can't be right because we know that there are only two normal modes for 

                                                 
2 Recall, for a standing wave on a string the spatial part of the standing wave can be written as ( )xλ

π2sin , so the 

parameter φ  is obviously related to the wavelength of the normal modes (in some manner – more detail on this 
later). 
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the two-oscillator problem.  In fact, because the N  oscillator problem involves an N  
dimensional eigenvalue problem, there are exactly N  normal modes.  The solution to 
this conundrum lies in the fact that the sine function [in Eq. (9)] is periodic.  It can be 
shown that there are 1+N  unique solutions, but because the 0=n  solution is trivial, 
there are only N  unique, nontrivial solutions.  In fact, we can specify these N  unique 
solutions by  choosing n  such that 

 
 Nn ≤≤1 . (11) 
 
Combining Eqs. (8), (10), and (11) we can write the N  eigenvectors as 
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nAq j 1
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π ,       Nn ≤≤1  (12) 

 
B. Eigenvalues 
So we have now specified the eigenvectors.  What about the eigenvalues?  We can 
obtain these by inserting Eq. (8) into Eq. (5), which produces 
 
 ( ) ( )[ ] ( ) ( )[ ]{ } 01sinsin21sin~sin 22 =++−−+Ω jjjj φφφωφ . (13) 
 
Now it looks like this equation depends upon j , but it does not.  Using some trig 
identities it is not difficult to show that Eq. (13) simplifies and can be solved for 2Ω  as 
 

 





=Ω

2
sin~4 222 φω . (14) 

 
And remembering that φ  only takes on the discrete values given by Eq. (10), we have 
the N eigenvalues 
 

 ( )
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12

sin~4 222

N
n

n
πω ,  (15) 

 
where Nn ,,3,2,1 L= .  The normal-mode frequencies are thus given by 
 

 ( )






+

±=Ω ± 12
sin~2

N
n

n
πω . (16) 

 
It is interesting to plot the (positive) frequencies as a function of mode number n .  
Such a graph is shown below for several values of N .  As with previous graphs we 
have set 1=m  and 1=sk .   
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As we will discuss in the next lecture, these graphs are essentially graphs of frequency 
vs inverse wavelength, and as such are known as dispersion relations or dispersion 
curves.  As we will see as we work our way through the course, the dispersion 
relation is extremely useful in understanding the propagation of waves associated with 
that dispersion relation.  Also, as we will discuss in the next lecture, the dispersion 
relation also contains information on the interactions between (the springs connecting) 

the oscillating objects.  Notice that the frequencies plotted for two oscillators ( 2=N ) 
equal our previous results 11 =Ω  and 32 =Ω  (for the special case of 1=m  and 1=sk ).   
 
III.  The Initial Value Problem 
Lastly, we discuss how the initial value problem can be solved using the normal 
modes.  Quite generally, using the above results and including both the +Ωn  and −Ωn  
frequencies, we can write the n th normal-mode solution as 
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where +Ω=Ω nn , and the constants nA  and nB  (which have replaced A  above) are 
arbitrary complex numbers.3  The general solution can thus be written as a linear 
combination of the normal modes as 
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[Equation (18) is the extension of Eq. (3) of the Lecture (4) notes.]  As before, the 
arbitrary amplitudes nA  and nB  depend upon the initial conditions of all the oscillating 
objects.   
 
To see exactly how the nA  and nB  are determined, let's consider the 3=N  case.  As in 
the two-oscillator case, let's make the normal modes explicitly real by setting *

nn AB = .  
For three oscillators Eq. (18) then becomes 
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As in Lecture Notes 4 for the two-oscillator problem, we can rewrite ti

n
ti

n
nn eAeA Ω−Ω + *  

as ( ) ( ) ( ) ( )[ ]tAtA nnnn Ω−Ω sinImcosRe2 and apply the initial conditions, which gives us 
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and 
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3 Notice that the column vector of the rhs of Eq. (17) is the n th eigenvector of the associated eigenvalue 
problem.   
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So we see that the real part of the amplitudes nA  depend upon the initial positions of 
the three objects, while the imaginary part of the amplitudes depend upon their initial 
velocities.  So where do we go from here?  You may remember that for the two-
oscillator problem we applied the normal-mode transformation to the equivalent of 
Eqs. (20) and (21), which allowed us to find the amplitudes (see p. 5-6 of the Lecture 
4 notes).  There is an equivalent transformation here that will allow us to find the nA 's.  
To most easily see what it is, let's explicitly write out Eq. (20) as 
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and evaluate the sine functions, which gives us 
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Now notice what now happens if we multiply this equation by the first eigenvector 
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24 =πππ .  We 

obtain 
 

 ( ) ( ) ( )( ) ( )1321 Re4020202
2
1 Aqqq =++ . (24) 

 
Notice the very nice result that the terms containing the amplitudes 2A  and 3A  
produce zero when multiplied by the first eigenvector (in row form).  We can now 
solve for the real part of 1A  in terms of the initial positions as 
 

 ( ) ( ) ( ) ( )( )020202
8
1Re 3211 qqqA ++= . (25) 

 
This equation is equivalent to the first row of Eq. (18) [or Eq. (20a)] in the Lecture 4 
notes for the two-oscillator problem.  To obtain ( )2Re A  and ( )3Re A  it should be 
obvious that one needs to multiply Eq. (23) by the respective (row) eigenvectors.  
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Further, to find the imaginary parts of the amplitudes, one similarly multiplies Eq. (21) 
by the row eigenvectors. 
 
This "trick" of multiplying by the row eigenvector to obtain the corresponding 
amplitude is probably the most important part of this lecture.  We will repeat it many 
times throughout the course:  when we discuss Fourier series we will use this trick to 
find the Fourier coefficients of a function; when we talk about vector spaces this trick 
will be recognized as the “inner product"; and when we talk about Fourier transforms 
this trick will be known as "inversion".  As we discuss these topics, you should keep in 
mind this little trick that allowed us to find the amplitudes nA .   
 
So we know how to find the nA 's, but what about the normal-mode transformation 
mentioned above?  Well, it is lurking about here.  If we now create an NN ×  matrix 
by stacking the row eigenvectors, then we indeed have that transformation.  So for the 
three-oscillator problem, the transformation matrix would be 
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If one multiples Eqs. (20) and (21) by Eq. (26) then one obtains two equations that 
are equivalent to Eqs. (18) and (19) of the Lecture 4 notes for the two-oscillator case.  

Also, if one multiplies the column vector 
( )
( )
( )















tq
tq
tq

3

2

1

 by Eq. (26) then one obtains the 
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Exercises 
 
*5.1  Using the appropriate trig formulae, obtain Eq. (14) for 2Ω  from Eq. (13). 
 
*5.2  Only N  unique eigenvalues and eigenvectors 
Eqs. (12) and (15) specify the N  eigenvector and eigenvalues for the N  oscillator 
problem.  The condition Nn ≤≤1  implies that values of n  outside of this range 
simply give a solution that is the same as one of the solutions inside the range 

Nn ≤≤1 . 
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(a)  Starting with Eq. (15) and using the angle-addition formula for the sine function, 
show, for example, that 2

2+ΩN  is the same as 2
NΩ .  [Hint:  write N  as ( ) 11 −+N  and 

2+N  as ( ) 11 ++N .] 
(b)  Starting with Eq. (12) show also that the eigenvector for 2+= Nn  is the same as 
the eigenvector for Nn = .   
 
*5.3  Similar to the second figure in the notes, graph the three eigenvectors for three 
coupled oscillators.   
 
*5.4  Four coupled oscillators 
(a)  What are the eigenvalues 2

nΩ  for four coupled oscillators? 
(b)  Similar to the second figure in the notes, find and then graph the four 
eigenvectors for four coupled oscillators. 
 
*5.5  Similar to Eq. (25), find the imaginary part of 2A  for the 3=N  system of 
coupled oscillators. 
 
*5.6  Apply Eq. (26), the normal-mode transformation, to Eqs. (20) and (21) to obtain 
the two equations for three oscillators that are equivalent to Eqs. (18) and (19) of the 
Lecture 4 notes for two oscillators.   
 
*5.7  Show that the square of Eq. (26), the normal-mode transformation, is 
proportional to the identity matrix.  Thus find the inverse of the normal-mode 
transformation. 
 
*5.8  For the three-oscillator problem find the normal-mode coordinates ( )tQ1 , ( )tQ2 , 
and ( )tQ3  in terms of the displacements ( )tq1 , ( )tq2 , and ( )tq3 .   


