
Lecture 3  Phys 3750 

Two Coupled Oscillators / Normal Modes 
 
Overview and Motivation:  Today we take a small, but significant, step towards 
wave motion.  We will not yet observe waves, but this step is important in its own 
right.  The step is the coupling together of two oscillators via a spring that is attached 
to both oscillating objects. 
 
Key Mathematics:  We gain some experience with coupled, linear ordinary 
differential equations.  In particular we find special solutions to these equations, 
known as normal modes, by solving an eigenvalue problem.   
 
I.  Two Coupled Oscillators  
Let's consider the diagram shown below, which is nothing more than 2 copies of an 
harmonic oscillator, the system that we discussed last time.  We assume that both 
oscillators have the same mass m  and spring constant k .  Notice, however, that 
because there are two oscillators each has it own displacement, either  or .   
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Based on the discussion last time you should be able to immediately write down the 
equations of motion (one for each oscillating object) as 
 
 0~

1
2

1 =+ qq ω&& , and (1a) 
 
 0~

2
2

2 =+ qq ω&& , (1b) 
 
where mks=2~ω .  As we saw last time, the solution to each of theses equations is 
harmonic motion at the (angular) frequency ω~ .  As should be obvious from the 
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picture, the motion of each oscillator is independent of the other oscillator.  This is 
also reflected in the equation of motion for each oscillator, which has nothing to do 
with the other oscillator. 
 
Let's now make things a bit more interesting by adding in another spring that 
connects the two oscillating objects together, as illustrated in the following picture.  
To make things even more interesting we assume that this new spring has a different 
constant .  However, to keep things simple we assume that the middle spring 
provides no force if q .  That is, this spring is neither stretched or compressed 
if its length is equal to the its length when two objects are at equilibrium.   
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Thinking about this picture we should realize that the two equations of motion will no 
longer be independent.  That is, the equation of motion for the first object will 
depend (somehow) upon what the second object is doing, and vice versa.   
 
Let's use Newton's second law to write down the equation motion for each object.  
Recall that Newton's second law for either object ( 2,1=i ) can be written as 
 

 
m
F

q i
i =&& , (2) 

 
where  is the net force on object i .  The tricky part, if there is a tricky part, is to 
determine the sum  on each object.  The net force on the first object comes from 
the spring on the left and the spring in the middle.  With a little thought you should 
realize that this net force  is 

iF

iF

1F
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 . (3a) ( 2111 qqkqkF ss −′−−= )

)

 
Make sure that you understand the signs of all the term on the rhs of this equation.  
Notice that the force provided by the middle spring depends not only on the first 
object's displacement but also on the second object's displacement.  Similarly, the net 
force on the second object is  
 
 . (3b) ( 1222 qqkqkF ss −′−−=
 
Substituting these two forces into Eq. (2), once for each object, we obtain the two 
equations of motion, 
 
 ( ) 0~~

21
2

1
2

1 =−′++ qqqq ωω&&  (4a) 
 
for the first object and  
 
 ( ) 0~~

12
2

2
2

2 =−′++ qqqq ωω&&  (4b) 
 
for the second.  Here mk ′=′2~ω .  Given the symmetry of the problem, it might not 
surprise you that you can obtain one equation of motion from the other with the 
transformation 1  in the subscripts that label the objects.   2↔
 
So now we have a considerably more complicated problem:  as expected from looking 
at the drawing above, the equation of motion for each object depends upon what the 
other object is doing.  Specifically, each equation of motion depends upon the 
displacement of the other object.   
 
II.  Normal Modes  
A.  Harmonic Ansatz 
So what are the solutions to these differential equations?  Well, we will eventually 
write down the general solution (next lecture).  But right now we are going to look at 
a special class of solutions known as normal-mode solutions, or simply, normal modes.  
A normal mode is a solution in which both masses harmonically oscillate at the same 
frequency.  We state why these special solutions are extremely useful at the end of the 
lecture.  For now let's see if we can find them.  We use the complex form of harmonic 
motion and write 
 
  and (5a) ( ) tieqtq Ω= 011
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 . (5b) ( ) tieqtq Ω= 022

 
Notice that the (unknown) frequency of oscillation Ω  of both oscillators is the 
same, a key feature of a normal mode.  Also, because we are using the complex form 
of harmonic motion, the amplitudes q  and  may be complex, but they too are 
unknown at this point.  Keep in mind that Eq. (5) is only the form of a normal-mode 
solution:  it is only a solution if it satisfies the equations of motion.  In other words, 
we now need to find values of the frequency 

01 02q

Ω  and amplitudes  and  that 
satisfy Eqs. (4a) and (4b), the equations of motion.   

01q 02q

 
So let's substitute Eq. (5) into Eq. (4) and see what that tells us about Ω , , and q .  
Carrying out the substitution and calculating the derivatives yields 

01q 02

 
 ( ) 0~~

0201
2

01
2

01
2 =−′++Ω− ΩΩΩΩ titititi eqeqeqeq ωω , and (6a) 

 
 ( 0)~~

0102
2

02
2

02
2 =−′++Ω− ΩΩΩΩ titititi eqeqeqeq ωω . (6b) 

 
Dividing by  (Is this legal?) and rearranging some terms gives tie Ω

 
 ( ) 0~~~

02
2

01
222 =′−Ω−′+ qq ωωω , and (7a) 

 
 ( ) 0~~~

02
222

01
2 =Ω−′++′− qq ωωω . (7b) 

 
So what do we have here?  We have two algebraic equations and three unknowns Ω , 

, and .  The problem seems a bit underspecified, and it is:  as we shall see below, 
we will only be able to solve for 

01q 02q
Ω  and the ratio 0201 qq .   

 
B.  Eigenvalue Problem 
If you have previously studied differential equations and linear algebra you may be 
inclined to write Eq. (7) in matrix notation as 
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ωωω
ωωω , (8) 

 
which you would recognize as an eigenvalue problem.  Generally, an eigenvalue 
problem is one where some linear operator (in this case a matrix) operating on some 
object (in this case a 2D column vector) produces a constant (in this case Ω ) times 
the original object.  Generally, an N -dimensional linear-algebra eigenvalue problem 

2

D M Riffe -4- 1/4/2013 



Lecture 3  Phys 3750 

has  solutions [which consist of special values of the constant (or eigenvalue) N 2Ω  

and amplitudes  (or eigenvector  )].   nqq 001K
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C.  Eigenvalues 
Well, that was a lot of terminology, but what about the solution?  Well, let's rewrite 
Eq. (8) as 
 

 ~~
~~

02

01
222

22

=











Ω−′′−

′−′+
q
q

ωω
ωω . (9) 

 
Now this is interesting.  Expressed in this way, we have the product of two quantities 
equal to zero.  There are two ways that Eq. (9) can be true.  The first, which is the 
trivial (i.e., uninteresting) solution, is 001q .  Physically, this corresponds to no 
motion of the system – pretty uninteresting!  The nontrivial way that Eq. (9) can be 
satisfied is if the determinant of the 2 × 2 matrix is zero.  That is 
 

 0~~
~~

222

22

=
Ω−′′−

′Ω−′+
ωω
ωω . (10) 

 

For a 2×2 matrix the determinant is easily calculated, BCAD
DC
BA

−= , so in this case 

Eq. (10) can be expressed as 
 
(~ 2222 Ω−′ω . (11) 
 
Eq. (11) [or Eq. (10)] is known as the characteristic equation for the eigenvalue 
problem.  This is great!  We now have an equation for the eigenvalue Ω  and thus the 
normal-mode frequency Ω ,  

2

 
 2~ω Ω−′+ . (12) 
 
Solving Eq. (12) for  produces the two eigenvalues 
 

222 2~,ω +Ω ,  (13) 
 
which gives us four solutions for the normal-mode frequency 
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 22 ~2~,~ ωωω ′+±±=Ω . (14) 
 
D.  Eigenvectors and Normal Modes 
So now that we have the eigenvalues 2~ω  and 22 ~2~ ωω ′+ , we need to find the 
eigenvector associated with each eigenvalue.  To do this we substitute each eigenvalue 
into either Eq. (7a) or (7b) (It doesn't matter which, you get the same equation in 
either case).   
 
1.  first normal mode 
For the first eigenvalue, 22 ~ω=Ω , this substitution produces 
 
 0~~

02
2

01
2 =′−′ qq ωω , (15) 

 
which gives us the result for the amplitudes 
 
 , (16) 0201 qq =
 

and so the eigenvector associated with the first normal mode is 
 .  This result tells 

us that both oscillators oscillate identically [check out Eq. (5) with the result of Eq. 
(16)] if this normal mode is excited.  That is, the objects oscillate with exactly the 
same amplitude and the same phase.   






1
1

 
Now because the eigenvalue 22 ~ω=Ω  corresponds to two normal-mode frequencies 

ω~±=Ω , this first eigensolution of the linear algebra problem gives us to two linearly-
independent solutions to the equations of motion. 
 
 ( ) tieAtq ω~

11 =  and ( ) tieAtq ω~
12 =  (17a),(17b) 

 
is the first solution, and  
 
 ( ) tieBtq ω~

11
−=  and ( ) tieBtq ω~

12
−=  (18a),(18b) 

 
is the second, where the amplitudes  and  are arbitrary.  Equations (17) and (18) 
can be written in linear-algebra inspired notation as 

1A 1B

 

  (19) ( )
( )
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tq
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and 
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 , (20) ( )
( )

tieB
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tq

ω~
1
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1
1

−

−








=









 
respectively.  The 1  and 1  denote the + − ω~+  and ω~−  solutions.  However, because 
oscillations at frequency ω~−  are really just oscillations at ω~ , any linear combination of 
these two solutions really just oscillates at the frequency ω~ , and so any linear 
combination of Eq. (19) and (20) can be thought of as the first normal-mode solution 
at frequency ω~ .  That is, the most general way we can write the first normal-mode 
solution is 
 

 ,  (21) ( )
( )

( )
( )

( )
( ) ( )titi eBeA
tq
tq

tq
tq

tq
tq ωω ~

1
~

1
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1
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1
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1
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−+

+







=








+








=









 
where  and  are unspecified constants.  Note that arbitrariness of A  and  is 
consistent with our knowledge that for an harmonic oscillator the frequency is 
independent of the amplitude.  Note also that (if we wish to at this point) we can 
specify the solution to be real, in which case we would set .   

1A 1B 1 1B

*
11 AB =

 
2.  second normal mode 
Let's now look at the second normal-mode solution, which corresponds to the second 
eigenvalue 22 ~2~ ωω ′+ .  As before, we substitute this eigenvalue into Eq. (7a), which 
gives us 
 
 0~~

02
2

01
2 =′−′− qq ωω  (22) 

 
or  
 
 , (23) 0201 qq −=
 

and so the eigenvector associated with the second normal mode is 
 .  So if this 

normal mode is excited the two oscillators oscillate with the same amplitude, but with 
opposite phase (or a phase difference of 






−1
1

2π ).  That is, when the first oscillator is 
moving to the left the second is moving to the right with the same magnitude in its 
displacement, and vice versa.   
 
As in the case of the first eigenvalue, there are two linearly-independent solutions 
corresponding to the two frequencies 22 ~2~ ωω ′+± .  The first solution is 
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 ( ) tieAtq 22 ~2~

22
ωω ′+=  and ( ) tieAtq 22 ~2~

22
ωω ′+−=  (24a),(24b) 

 
and the second is 
 
 ( ) tieBtq 22 ~2~

21
ωω ′+−=  and ( ) tieBtq 22 2

22
ωω ′+−−= , (25a),(25b) 

 
or in linear-algebra notation 
 

 ( )
( )

tieA
tq
tq 22 ~2~

2
22

1

1
1

ωω ′+

−
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=






  (26) 

 
and 
 

 ( )
( )

tieB
tq
tq 22 ~2~

2
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1

1
1

ωω ′+−
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−

=






 . (27) 

 
As before, the general form of this normal-mode solution is 
 

 ( )
( )

( )
( )

( )
( ) ( titi eBeA
tq
tq

tq
tq

tq
tq 2222 ~2~

2
~2~

2
22

1

22

1

22

1

1
1
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 ) (28) 

 
The graphs on the following page plot the time-dependent amplitudes q  and ( )t1 ( )tq2  
for the  two normal modes for the following values of the arbitrary constants:  

2111 == BA  for the first normal mode and 2122 == BA  for the second normal mode. 
(With these choices the solutions are real.)  For these graphs we have also set m , , 
and  equal to 1, so that ~

sk

sk ′ 1=ω  and 3~2~ 22 =′+ ωω .  (Admittedly, we have not 
specified units here, but if standard SI units are used for the mass, spring constants, 
and time, then the unit for displacement is meters.)  As the graphs show, in the first 
normal mode the two objects oscillate identically, while in the  second normal mode 
they oscillate exactly oppositely.   
 
As we will see in the next lecture, a great usefulness of the normal mode solutions is 
that ANY solution of Eqs. (4a) and (4b), the equations of motion for this coupled 
oscillator system, can be written as a linear combination of these two normal-mode 
solutions.  Indeed, this property of normal-mode solutions is so important that it will 
be a theme throughout the course. 
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Exercises 
 
*3.1  Starting with the Euler formula ( ) ( )θθθ sincos iei +=  (and its complex conjugate), 
write ( )θcos  and ( )θsin  in terms of  and .   θ θie−ie
 
*3.2  Write the expression titi BeAe ωω ~~ −+   in the form ( ) ( tDt )C ωω ~sin~cos + .  That is, find 

 and  in terms of  and C D A B .  From this result show that if *AB =  then  and  
are both real (which means that 

C D
tiBe ωtiAe ω ~~ −+  is real).   

 
*3.3  In the graph of the first normal-mode solution, ( )tq1  and ( )tq2  both look like 
cosine functions.  Show for 2111 == BA , that  the solution  
 

( )
( ) ( titi eBeA
tq
tq

ωω ~
1

~
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=







 ) can indeed be written as ( )
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*3.4  If we take the limit  k  in the coupled oscillator problem, what does this 
correspond to physically?  What happens to the normal mode frequencies?   Does this 
make sense?  (Note:  if two normal modes have the same frequency, then they are said 
to be degenerate, and any linear combination of those two normal modes is also a 
normal mode.) 

0→′s

 
**3.5  Three coupled oscillators.  In this problem you will find the normal modes 
of three coupled oscillators, as illustrated below.  Assume that each object has mass  
and each spring constant is .   

m
sk

 
 

1q 2q 3q

 
 
(The following steps lead you through the same procedure as is used in the notes to 
solve the two-oscillator problem in order to solve this problem.  It will be most 
helpful if you carefully study that procedure before tackling this problem.) 
 
(a)  Using Newton's second law, write down the equation of motion for each object 
[in the form of Eq. (4) in the notes]. 
(b)  Assume a normal-mode type solution and find the three algebraic equations 
[equivalent to Eq. (7) in the notes] that govern 2Ω  and the amplitudes , q , and . 01q 02 03q
(c)  Write your equations in (b) in matrix form [equivalent to Eq. (9) in the notes]. 
(d)  Find the characteristic equation [equivalent to Eq. (11) in the notes] that 
determines the three eigenvalues. (Hint:  you will need to calculate the determinant of 
a 3×3 matrix.) 
(e)  Solve the characteristic equation and show that the three eigenvalues for this 
problem are ( ) ( ) 2222 ~22,~2,~22 ωωω +−=Ω . 
(f)  For each eigenvalue, find the eigenvector associated with that eigenvalue. 
(g)  Write down the 3 normal mode solutions in the form of Eqs. (21) and (28) in the 
notes. 
(h)  As precisely as possible, describe the motion of the three objects for each of the 
normal modes.   


