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A Propagating Wave Packet – Group Velocity Dispersion 
 
Overview and Motivation:  In the last lecture we looked at a localized solution 
( )tx,ψ  to the 1D free-particle Schrödinger equation (SE) that corresponds to a particle 

moving along the x  axis (at a constant velocity).  We found an approximate solution 
that has two velocities associated with it, the phase velocity and the group velocity.  
However, the approximate solution did not exhibit an important feature of the full 
solution – that the localization (i.e., width) of the wave packet changes with time.  In 
this lecture we discuss this property of propagating, localized solutions to the SE.   
 
Key Mathematics:  The next term in the Taylor series expansion of the dispersion 
relation ( )kω  will be central in understanding how the width of the pulse changes in 
time.  We will also gain practice at looking at some complicated mathematical 
expressions and extracting their essential features.  We will do this, in part, by defining 
normalized, unitless parameters that are applicable to the problem.   
 
I.  The First-Order Approximate Solution (Review)  
In the last lecture we looked at a localized, propagating solution that can be described 
as a linear combination of traveling, normal-mode solutions of the form ( )[ ]tkkxie ω− , 
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If Eq. (1) is a solution to the SE, then the dispersion relation is ( ) mkk 22h=ω .  In 
order to gain some insight into Eq. (1) we Taylor-series expanded the dispersion 
relation about the average wave vector 0k  associated with ( )tx,ψ , 
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We then approximated ( )kω  by the first two terms (the constant and linear- k  terms) 
in the expansion and obtained the approximate solution  
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where ( ) ( ) kkkvph ω=  is known as the phase velocity and ( ) ( )kkvgr ω′=  is known as the 
group velocity.  The phase velocity is the speed of the normal-mode solution 

( )( )[ ]tkkxike 000 ω− , while the group velocity is the speed of the envelope function 
( )[ ] 22

0 σω tkxe ′−− .  Because it is also the speed of the probability density function 
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it can be though of as the average speed of the particle that the SE describes.   
 
However, the approximate solution [Eq. (3)], does not exhibit an important property 
of the exact solution:  the localization (or width) of the exact solution varies with time 
while the localization of the approximate solution is constant (and can be described by 
the width parameter σ .)   
 
The three videos, SE Wavepacket4.avi, SE Wavepacket5.avi, and SE Wavepacket6.avi 
illustrate the time dependent broadening of propagation wave-packet solutions.  
Notice that the narrower the initial wave packet, the faster it spreads out in time.  This 
is one result from the analysis below.   
 
II.  The Second-Order Approximate Solution 
By also including the next term in Eq. (2), the Taylor's series expansion of the 
dispersion relation, we obtain an approximate solution that exhibits the desired 
feature of a width that changes as the wave packet propagates.1  Including the first 
three terms in the Taylor's series expansion and substituting this into Eq. (1) produces, 
after a bit of algebra, the approximate solution 
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This is exactly the same as the approximate solution that we obtained in the last 
lecture except for the term containing ( )0kω ′′ .  But notice where it appears – as an 
additive term to 42σ , which controls the width of the pulse.  Thus we might already 
guess that ( )0kω ′′  will affect the width as the pulse propagates. 
 
Fortunately, for purposes of further analysis Eq. (5) has an analytic solution 
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1 Actually, all of the higher-order terms can contribute to the broadening of the pulse.  However, if the width 
parameter σ  is not too small, then only the contribution of the quadratic term to the time dependent 
broadening needs to be considered. 
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OK, so maybe solving the integral wasn't so fortunate.  But let's see what we can do 
with it.  First notice that, compared to our previous solution we have two new 
exponential-function terms, ( ) ( )( )2

02arctan2 σω tkie ′′−  and ( ) ( )[ ] ( )[ ]{ }2
0

42
00 22 tktkxtkie ωσωω ′′+′−′′  [Notice 

that they are both equal to 1 when ( ) 00 =′′ kω .]  However, because the exponents in 
both of these terms are purely imaginary, they contribute nothing to the width of the 
wave packet (as we will see below).  We will thus not worry about them.  The third 
exponential term we are already familiar with; it is the harmonic traveling wave 
solution ( )( )[ ]tkkxike 000 ω−  that propagates at the phase velocity ( )0kv ph .  (Because its 
exponent is also purely imaginary, it too does not contribute to the width of the wave 
packet.)   
 
It is the fourth exponential-function term that has some new interest for us.  Notice 
that it is a Gaussian function that again travels with the group velocity ( )0kω′ , but with 
a time-dependent width 
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that is a minimum for 0=t .  Notice that if ( ) 00 =′′ kω , as in the case of the wave 
equation, then the width has no time dependence and is simply σ .2  However, in the 
case of the SE, for example, ( ) 00 ≠=′′ mk hω .  Thus the SE wave packet has a time 
dependent width. 
 
For large times we see from Eq. (7) that ( )tσ  is approximately linear vs time 
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which tells us that  
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That is, for long times the rate of broadening is proportional to the second derivative 
of the dispersion relation and inversely proportional to the width parameter σ .  That 
is, the narrower the pulse is at 0=t , the faster it broadens with time, as the videos 
above illustrated.   
                                                 
2 Because all derivatives of the dispersion relation for the WE higher than first order are zero, Eq. (3) is exact 
for the wave equation. 
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III.  Normalized Variables 
To gain some further insight into this time-dependent width let's make a graph of 
( )tσ  vs t .  But let's be smart about the graph;  let's construct the graph so that it has 

universal applicability.  To do this we will graph unitless, normalized quantities that are 
scaled values of  ( )tσ  and t .  So how do we normalize ( )tσ  and t  to make them 
universal to the problem at hand.  The answer is in Eq. (7) itself.  First notice that if 
we divide ( )tσ  by σ  then we will have a unitless width that is equal to 1 at 0=t .  So 
let's define a normalized width Nσ  as ( ) σσ t .  What about the variable t ?  Again, the 
answer is in Eq. (7).  Notice that the quantity ( ) 2

02 σω tk′′  is also unitless because its 
value squared is added to 1 in Eq. (7).  So let's define a normalized time variable 

( ) 2
02 σωτ tk′′= .  With these two universal variables Eq. (7) can be re-expressed as 

 
 ( ) [ ] 2121 ττσ +=N  (10) 
 
Ah, much simpler!  The figure on the next page plots ( )τσ N  vs τ  on two different 
graphs with different scales.  From the  graphs we can visually inspect the behavior of 
Eq. (10).  For example, we see for 1<<τ  that ( ) 1≈τσ N .  This means that for 1<<τ  the 
width is approximately constant vs time.  The actual time scale (in seconds) over 
which this is true will, of course, depend upon the parameters that went into the 
definition of τ :  ( )0kω ′′  and σ .  From the graph we also see that for 1>>τ , ( ) ττσ ≈N , 
indicating (again) that the width changes linearly vs time for large negative or positive 
times.   
 
IV.  Application to the Schrödinger Equation 
Lastly, let's consider the probability density ψψ * , assuming that Eq. (6) describes a 
solution to the SE.  From Eq. (6) we calculate 
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Using Eq. (7), the definition of ( )tσ , Eq. (11) can be rewritten more compactly as 
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Notice that the probability density retains its Gaussian shape as the wave packet 
propagates, but with a time-dependent width parameter equal to ( ) 2tσ .  Notice that 
the amplitude ( )tσσψψ 0

*
0  that multiplies the Gaussian function is also time 

dependent; as the width ( )tσ  increases this amplitude decreases.  The amplitude varies 
with the width such that that the total probability for finding the particle anywhere 
along the x  axis, 
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remains constant in time.   
 
The solution given by Eq. (6) and the probability density given by Eq. (11) are 
illustrated for both negative and positive times in the videos SE Wavepacket7.avi, SE 
Wavepacket8.avi, and SE Wavepacket9.avi.  As Eq. (10) indicates, the pulse becomes 
narrower as 0=t  is approached, and the pulse becomes broader after 0=t .  Notice, 
especially in SE wavepacket8.avi, that there is a time near 0=t  during which the pulse 
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width is approximately constant, corresponding to 1<<τ .  During this time the height 
of ψψ *  (which is also shown in the videos) is also approximately constant.   
 
Exercises 
 
*28.1  Equation (2) is the Taylor's-series expansion of the dispersion relation about 
the point 0kk = .  For the dispersion relation appropriate to the SE, find all terms in 
this expansion.  Then argue why Eqs. (5) and (6) are exact solutions (as opposed to 
approximate solutions) to the SE. 
 
**28.2  A SE free particle 
(a)  Rewrite Eq. (11), the expression for the probability density, with expressions for 
( )kω′  and ( )kω ′′  that are appropriate for a wave described by the Schrödinger equation.   

(b)  Make several graphs (at least 3) of the probability density ( ) ( )txtx kk ,,
00

* ψψ  vs x  for 
several different values of t  .  The graphs should clearly illustrate the change in the 
width of the wave packet as the wave packet propagates.  For simplicity you may set 

1=h  and 1=m . 
 
*28.3  The Dimensionless Time Variable τ  
(a)  Using dimensional analysis, show that the variable ( ) 2

02 σωτ tk′′=  is unitless. 
(b)  1<<τ  and 1>>τ  corresponds to what conditions on t ? 
 
**28.4  The figure in the notes shows that for 1.0<τ  the width of the wave packet is 
nearly constant.  Let's apply this result to a SE free electron with a kinetic energy of 
10 eV.  To do this find the value of t  (in seconds) that corresponds to 1.0=τ .  Do 
this for values of σ  = 10 nm and 10 µm.  For these two cases how far does the 
electron travel in the time corresponding to 1.0=τ ?  How does each of these 
distances compare with the respective initial width? 
 
**28.5  SE probability density. 
(a)  Substitute Eq. (12) into Eq. (13), calculate the integral, and thus show that the 
result does not depend upon t .   
(b)  Generally, the constant 0ψ  in Eq. (12) is chosen so that the total probability to 
find the particle anywhere is equal to 1.  Using your result in (a), find a value for 0ψ  
that satisfies this condition.   
 
*28.6  Show that during a normalized time interval of 1=τ  the normalized distance 
σd  traveled is equal to kk σ0  (where σσ 2=k ).  As the normalized width Nσ  is 

controlled by  τ , this shows that the dispersion is controlled by the ratio kk σ0 .   


