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Energy Density / Energy Flux / Total Energy in 3D 
 
Overview and Motivation:  In this lecture we extend the discussion of the energy 
associated with wave motion to waves described by the 3D wave equation.  In fact, 
the first part of the discussion is exactly the same as the 1D case, just extended to 3D.  
In the examples we look at the energy associated with spherically symmetric waves. 
 
Key Mathematics:  Some 3D calculus, especially the divergence theorem and the 
spherical-coordinates version of the gradient.   
 
I.  Density, Flux, and the Continuity Equation   
As in the 1D case let's assume that we are interested in some quantity ( )tQ  that has an 
associated density ( )tx,ρ .  Since we are dealing with a density that lives in a 3D space, 
the units of density will be the units of Q  divided by m3.  That is, [ ] [ ] 3mQ=ρ .   
 
Let's consider a volume Ω  enclosed by a surface S , as illustrated in the following 
figure.  At each point on the surface we define a perpendicular, outward-pointing unit 
vector ( )SS rn̂  associated with each point Sr  on the surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The amount of Q  contained in Ω  can be written as 
 
 ( ) ( )∫

Ω
Ω = rdttQ 3,rρ  (1) 

 
As in the 1D case, if Q  is a conserved quantity, then the change in Q  inside Ω , 
 

( )SS rn̂  

( )SS rn̂
( )

enclosed volume Ω  

( )SS rn̂  
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 ( ) ( )
∫
Ω

Ω

∂
∂

= rd
t
t

dt
tdQ 3,rρ , (2) 

 
must be equal to the net flow of Q  into Ω , 
 

 ( ) ( ) ( )∫ ⋅−=Ω

S
SSS dSnt

dt
tdQ rrj ˆ, . (3) 

 
The (vector) quantity j  is again known as the Q  current density or the Q  flux.  The 
dimensions of j  are the dimensions of ρ  times a velocity, so  [ ] [ ] smρ=j .  Thus also 
[ ] [ ] ( )sm2Q=j .  Note that the rhs of Eq. (3) can be interpreted as the total Q  current 
flowing out through the surface S .  Equating the rhs's of Eqs. (2) and (3) gives us 
 

 ( ) ( ) ( )∫∫ ⋅−=
∂

∂

Ω S
SS dStrd

t
t rnrjr ˆ,, 3ρ . (4) 

 
We can now use the divergence theorem (which is one of several 3D extensions of 
the fundamental theorem of calculus), 
 
 ( ) ( ) ( )∫∫ ⋅=⋅∇

Ω S
SSS dSrd rnrArA ˆ3 , (5) 

 
to rewrite Eq. (4) as 
 

 ( ) ( ) 0,, 3 =



 ⋅∇+

∂
∂

∫
Ω

rdt
t
t rjrρ  (6) 

 
Now, because the volume Ω  is arbitrary, the integrand must vanish.  Thus 
 

 ( ) ( ) 0,,
=⋅∇+

∂
∂ t
t
t rjrρ . (7) 

 
Equation (7) is the 3D version of the continuity equation, which again is a local 
statement of the conservation of Q .   
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II.  Energy Density and Flux for 3D Waves   
We now apply this discussion to the energy associated with 3D waves.  In this case  Q  
represents the energy associated with a wave (within some volume).  For waves 
described by the 3D wave equation the energy density can be written as 
 

 ( ) ( )











∇+







∂
∂

= 22
2

2
, qc

t
qt µρ r , (8) 

 
where ( )tq ,r  is the variable that is governed by the wave equation.  The first term on 
the rhs of Eq. (8) is the kinetic energy density Tρ , and the second is the potential 
energy density Vρ .  Now Eq. (8) is fairly general as long as µ  is suitably interpreted.  
If q  is a true displacement, then µ  will be a parameter with the units of mass density.  
If q  represents something else, say an electric field, then it will have some other units.  
From Eq. (8) it is fairly easy to see that the units of µ  are generally given by 
[ ]=µ (Joule s2 )/(m3 [ ]2q ).  It is not hard to show that the energy flux, which can be 
written as 
 

 ( ) q
t
qct ∇
∂
∂

−= 2, µrj , (9) 

 
together with the energy density in Eq. (8) satisfy Eq. (7), the continuity equation.   
 
III.  Several Examples 
Let's look at some examples that involve spherically symmetric waves.   
 
A. Spherical Standing Wave 
Let's look at a standing-wave example.  You may recall that a spherical-coordinates 
separable solution that is finite everywhere is of the form 
 
 ( ) ( ) ( )( ) ( ) ( )ikct

k
ikct

k
im

m
im

m
m
llmlkmlk eBeAeDeCPkrjCtrq −− ++= φφθφθ cos,,, ,,,, , (10) 

 
where lj  is a spherical Bessel function (of the first kind), and m

lP  is an associated 
Legendre function (of the first kind).  The parameter m  is an integer whose absolute 
value can be no larger than the nonnegative integer l .  If we want a solution with 
spherical symmetry, then there can be no θ  or φ  dependence. This means that both l  
and m  must be zero because the only associated Legendre function independent of θ  
is ( )( ) 1cos0

0 =θP .  Thus, the spherical Bessel function in Eq. (10) must be 
( ) ( ) ( )krkrkrj sin0 = , and so Eq. (10) simplifies to 
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 ( ) ( ) ( )ikct
k

ikct
kkk eBeA

kr
krCtrq −+=

sin,,, 0,0,0,0, φθ . (11) 

 
If we simplify this further by letting kA  be a real number and let kk AB =  (making the 
solution explicitly real) then we have 
 

 ( ) ( ) ( )kct
kr
krCAtrq kkk cossin2,,, 0,0,0,0, =φθ . (12) 

 
Because all parts of the system oscillate with the same phase, this is a spherically 
symmetric version of a standing wave. 
 
Using Eqs. (8) and (9) we can calculate the kinetic and potential energy densities and 
the energy flux associated with the wave in Eq. (12).  To do this in a fairly simple 
manner we can use the spherical-coordinates version of the gradient 
 

 ( ) ( ) φθr ˆ
sin

1ˆ1ˆ,,
φθθ

φθ
∂
∂

+
∂
∂

+
∂
∂

=∇
f

r
f

rr
frf , (13) 

 
where r̂ , θ̂ , and φ̂  are unit vectors in the r , θ , and φ  directions, respectively.  The 
nice thing about spherically symmetric solutions is that only the first term on the rhs 
of Eq. (13) contributes to the gradient. 
 
A video of q , Tρ , Vρ , and j  for the wave in Eq. (12), Energy in 3D Standing Wave.avi, 
is available on the class web site.  As the video shows, the displacement is indeed a 
standing wave.  Unfortunately, the energy densities and flux fall off with the radial 
distance r  so fast that it is hard to really see their behavior.   
 
Given this, we have made another video, Energy in 3D Standing Wave 2.avi, which plots 
the surface integrated density and flux,1  
 
 ( ) ( )∫=

S
S dSrD rρ , (14) 

 
and 
 
 ( ) ( ) ( )∫ ⋅=

S
SS dSrI rnrj ˆ , (15) 

 
                                                 
1 The video separately shows the kinetic and potential contributions to ( )rD .   
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where the surface S  is of radius r  centered at the origin.  Now because a spherically 
symmetric solution is independent of the two angles θ  and φ , this amounts to 
multiplying the density ρ  and flux j  by the factor 24 rπ , which is the surface area of 
the sphere S .  The quantity ( )rD  (which has units of Joule/m) can be though of as a 
linear energy density (i.e., the energy per unit length along the radial direction), while 
the quantity ( )rI  (which has units of Joule/s) is the total (energy) current flowing 
through S .  Notice that this new video is very similar to the 1D standing wave video 
that we looked at in the last lecture.   
 
B. Spherical Traveling Wave 
Let's also look at a spherically symmetric traveling wave.  If we are thinking about 
sound waves, this is the sort of wave that would result from a pulsating sphere 
centered at the origin.  We can construct a traveling wave solution from a linear 
combination of 2 linearly independent standing waves.  We thus need to use both 
kinds of spherical Bessel functions.  The linear combination that produces a 
spherically symmetric, outgoing, traveling wave is2 
 
 ( ) ( ) ( ) ( ) ( )[ ]kctkrykctkrjCtrq kk sincos,,, 000,0,0,0, −=φθ . (16) 
 
which can be written in terms of sine and cosine functions as 
 

 ( ) ( ) ( ) ( ) ( )



 −= kct

kr
krkct

kr
krCtrq kk sincoscossin,,, 0,0,0,0, φθ . (17) 

 
The video, Energy in 3D Traveling Wave.avi, shows ( )rD  and ( )rI  for this wave.  Indeed, 
away from the origin the wave appears to be an outgoing traveling wave.  However, at 
the origin something rather different seems to be happening – something with some 
standing-wave character, perhaps? 
 
Well, as it turns out, the current density j  has terms with two types of behavior.  The 
first type has a 21 r  dependence.  These terms describe the radiative part of the wave, 
which carries energy off to infinity.  Because the radiative part of j  varies as 21 r  the 
radiative part of ( )rI  does not vanish as ∞→r .  However, there are also 
nonradiative terms, which vary as 31 r .  These terms act more like a standing wave:  
the energy associated with these terms just oscillates back and forth and never really 
goes anywhere.  Because of the 31 r  behavior to the nonradiative part of j , the 
current ( )rI  associated with these terms vanishes as r1  as ∞→r .  These terms are 

                                                 
2 Note that this solution is only valid in the region of space outside the source.  In the video you may think of 
the source as being infinitesimally small, so that the solution is valid infinitesimally close to the origin. 
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thus sometimes called the local fields associated with the source.  In the video Energy 
in 3D Traveling Wave 2.avi we separately show the current ( )rI  associated with each 
type of term.  Notice that the radiative piece looks essentially like a 1D traveling wave 
while the nonradiative piece is really only important in the vicinity of the origin.   
 
Exercises 
 
*25.1  Show that the expressions for the density ρ  and j  in Eqs. (8) and (9), 
respectively, satisfy Eq. (7), the continuity equation. 
 
**25.2  Spherical Traveling Wave 
(a)  Write the wave in Eq. (17), 
 

( ) ( ) ( ) ( ) ( )



 −= kct

kr
krkct

kr
krCtrq kk sincoscossin,,, 0,0,0,0, φθ , 

 
as an explicit function of ( )ctr − , thus showing that it is a traveling wave moving 
outward from the origin.   
(b)  Using your result from part (a), show that the radiative and nonradiative 
components of the current density j  can be written, respectively, as 
 

 ( ) ( )rj ˆcos, 2
2

2
0

3
kctkr

r
qctrR −=

µ     and    ( ) ( ) ( )rj ˆsincos, 3

2
0

3
kctkrkctkr

kr
qctrNR −−−=

µ . 

 
(c)  Calculate the time average of each of these current-density components (defined 

as ( )∫
T

dttr
T 0

,1 j , where T  is one period of oscillation) and show that the average of the 

radiative part points in the positive r̂  direction, while the time average of the 
nonradiative part is zero.  (Note:  neither answer should have any dependence on T .) 
 
 
*25.3  Plane Wave Energy Density.  Consider the plane-wave solution to the 3D 
wave equation  ( ) ( ){ }kctzkykxkiqtzyxq zyx −++= exp,,, 0 .   
(a)  Calculate the kinetic, potential, and total energy densities ( )tzyxT ,,,ρ , ( )tzyxV ,,,ρ , 
and ( )tzyx ,,,ρ , respectively and the energy current density ( )tzyx ,,,j .   
(b)  Show that the 3D continuity equation is satisfied by your expressions for ρ  and j .   
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**25.4  Spherical Standing Wave Energy Density.  Consider the spherically 
symmetric standing wave solution to the 3D wave equation 

( ) ( ) ( )kct
kr
krqrq cossin,, 0=φθ . 

(a)  Calculate the kinetic, potential, and total energy densities ( )trT ,,, φθρ , ( )trV ,,,, φθρ , 
and ( )tr ,,,, φθρ , respectively. 
(b)  Show for large distances from the origin ( 1>>kr ) that the total energy density for 

this wave is approximately ( ) ( ) ( ) ( ) ( ) ( )
















+



=

22
22

0 coscossinsin
2

,,,, kct
kr
krkct

kr
krkcqtr µφθρ .  


