Lecture 23 Phys 3750

Spherical Coordinates II / A Boundary Value Problem /
Separation of Variables Summary

Overview and Motivation: We look at the fourth differential equation that arises in
the separable solution to the spherical-coordinates wave equation. We then review
the separable solutions in all three coordinate systems — Cartesian, cylindrical, and
spherical. Finally, we use a separable solution to find the normal modes of a
drumhead.

Key Mathematics: More separation of variables, spherical Bessel functions, and
normal modes in polar coordinates.

I. Separation of Variables in Spherical Coordinates (continued)
Last time we began our search for separable solutions to the wave equation in
spherical coordinates,
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We assumed a solution of the form ¢(r,6,4,t)= R(r)®(0)®(4)T(t) and then solved
three ordinary differential equations, which gave us the three functions T(t), ®(g),
and ©(0). Because each of these differential equations is second-order, linear, and
homogeneous, there are two linearly independent solutions that can be (lineatly)
combined to produce the most general form of each solution. For the functions T(¢),
d(p), and ©(@) the most general forms can be written as

T,(t)= A,e™ + B e | @)
®,(¢)=C,em +D,e ™,  m=0,1,2,..1, 3)
©,,(0)=E,, F"(cos(0))+ F,, 0 (cos(@)),  1=0.12,... “
Here 4, , C,, and F,, , etc. are undetermined constants, and B” and Q" are

associated Legendre functions of the first and second kind, respectively.

Let's now look at the R(r) part of q(r,H, ¢,t). Looking back at p. 4 of the Lecture 22
notes we see that the ordinary differential equation for R(r) is

—1(l+1)= —%(rzR')’ — k2, (5)
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which can be rewritten as
r2R"+2rR' +[kr? =11 +1)]R = 0. (6)

As with some of the other equations that we have looked at, this not quite in standard
form. Equation (6) can be put in standard form (in a manner similar to the Bessel
equation that arose in cylindrical coordinates) by defining the new independent
variable s =kr. With this definition (and the chain rule) Eq. (6) can be transformed
into

s2R"(s)+2sR'(s)+[s> = 1(1+1)]R(s)=0, (7)

where we emphasize that R is now a function of the new variable s. If you look back
at Eq. (21) of the Lecture 21 notes (Bessel's equation), you will see that Eq. (7) is quite
similar to that equation.

The solutions to Eq. (7) (which are indeed similar to Bessel functions) are known as
spherical Bessel functions. The spherical Bessel functions of the first and second
kind are denoted j,(s) and y,(s). The following figure plots these functions (for

1=0,1,23).
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The following facts about these functions, some of which can be discerned from the
graphs, are worth noting.

D M Riffe -2- 3/28/2011



Lecture 23 Phys 3750

() j,(s) are finite everywhere; y,(s) diverge ass —0. Also notice the behavior of
these functions as s —0 for increasing /: the functions j,(s) converge more rapidly

while the functions y,(s) diverge more rapidly.

(z) The functions oscillate with decreasing amplitude as s — .

(z27) 'The spherical Bessel functions can be written in terms of (standard) Bessel
tunctions of noninteger order as

) =T fs T (), w(s)=Tals v, (6) (8a), (8b)

[S1E

(@) The j,(s) functions have the convenient integral representation’

T

J (s) = mjcos{s cos(ﬁ)]sin”+1 (6) do . 9)

(1) The first three j,(s)'s and y,(s)'s can be represented in terms of sine and cosine

functions as

)=, )= (108, (10b)
j (s): sil;(s) B coz(s) ’ M (s) _ cossz(s) B sir;(s) , (100), (10d)

RO 22 i) Zeosls), )= 2-Heosls)-Jsins). (109, (109

S S

Similar, although increasingly more complicated, formulae can be derived for higher-
order j,(s)'s and y,(s)'s. Notice that the formulae for y,(s) are identical to the

formula for j,(s) with the changes sin(s) — —cos(s) and cos(s)—> sin(s).

Let's now get back to our solution to the wave equation. Because s = kr, the solution
to Eq. (6) [the equation for R(r)], can be generally written as

1 At least Eq. (9) can be convenient when using a computer mathematic program such as Mathcad. In fact,

you can use Eq. (9) and Mathcad to generate the formulae for j, (S) in Eq. (10).
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sz( ) le]l(kr)+Hklyl(kr) (11)

So putting Egs. (2), (3), (4), and (11) together we now have the general form of the

separable solution in spherical coordinates

qk,l,m(r9€’¢ 1)= [szfz kr)+Hklyl kr ][E B (cos(¢ ))+Fl,lem(COS(9))] (12)

X(Cme”’”’ _l_Dme—lmqﬁ)(Akelkct +Bk€ zkct) >
where the parameters / and m are specified by /=0,1,2,... and m=0,1,2,.../. The
parameter k is unspecified.

II. Summary of Separable Solutions

We previously wrote down separable solutions in the other coordinate systems, but
never in as general a form as Eq. (12) for spherical coordinates. Let's now do this for
the previous coordinate systems. For cylindrical coordinates we can write the general
separable solution as

q}'l a, k (p’ [Gn a n ap)+ H!‘I,a Yi'l (ap)] (Eneln¢ + Ele_in¢)

> 13
X(Ck’ael\/mz +Dk,a€_imz)(14keﬂm +Bke—ikct) ( )

where J, and Y, are Bessel functions. The parameter n is specified by n=0,1,2,...,

but the parameters a and k are unspecified. Similarly, for Cartesian coordinates we
have?

= ik ik ik, —ik,
D, k, k. (x,y,z,t)— (kael A x)‘)(Ekyel Y+ F e i y) "
(C e+ D, e”‘)’z)(Ak i VKT | o k3+k§+k3t)
z xoKy oKy

Kook ke,
In this equation none of the parameters k_, k , or k, are specified.

Some general remarks concerning Eqs. (12) — (14) are in order. First, notice that all
three solutions depend upon three parameters, which are (essentially) the three
independent separation constants that arise in the separation-of-variables process.
Second, the discrete parameters (/,m in spherical coordinates, n in cylindrical
coordinates) are discrete because of mathematical considerations related to the
coordinate system being used. The other parameters (k in spherical coordinates, k,a

2 You have seen an almost general form for Cartesian coordinates in Exercise 19.2.

D M Riffe -4- 3/28/2011



Lecture 23 Phys 3750

in cylindrical coordinates, k .k, ,k, in Cartesian coordinates) can take on any values

and the solutions will still satisfy the wave equation.

For a given problem, the physics of the situation may dictate that these parameters
take on only certain values. For example, in Exercise 19.2, where you found the
normal-mode standing waves in a rectangular room, you found that because of the
boundary conditions the parameters k,, k,, and k. could only take on the values

A S A L (15a) — (15¢)

where the n,'s are integers and the L;'s are the dimensions of the room. Physical

considerations, such as boundary conditions, may also place constraints on the
multiplicative factors that appear in Eqs. (12) — (14).

ITII. A Vibrating Circular Drumhead

Let's look at another example where physics constrains some of these unspecified
parameters. In particular, let's find the normal modes of vibration of a circular
drumhead. First, we must recognize that this is a two dimensional, rather than a three
dimensional problem. If we were working in Cartesian coordinates we would only
need x and y, but because we are interested in a circular drumhead we should
recognize that it might be better to work in polar coordinates (with the origin at the
center of the drum head). Well, if we were to write the 2D wave equation in polar
coordinates and do separation of variables, the solutions would be the same as the

k* =a* solutions for cylindrical coordinates in Eq. (13). That is, the solutions would
be

4,.(0.0.t)=[G, . (ap)+ H, Y, (ap)] (E e + Fe) (4,67 + B,e7). (16)

na’n

Let's now apply some physics. First we know that we want the displacement ¢ to be
everywhere finite. So because the functions Y,(s) diverge for s —0 we must have
H,,=0. Also, we want the displacement to be a real quantity. With that in mind we
explicitly write the ¢ and ¢ parts of Eq. (16) in terms of sine and cosine functions,
rather then the complex exponential functions.” We then have

90 (,0, ¢,t) =G, J, (a,o) [En cos(n¢)+ 17” sin(n¢)][2a cos(act)+ Ea sin(act)] , (17)

3 There are, of course, other ways to make sure that the solution is real. See the discussion on p. 8 of the
Lecture 2 notes.
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where the quantities with tildes in Eq. (17) are real multiplicative factors [that can be
related to the quantities without tildes in Eq. (16), if necessary].

There is now one more bit of physics to consider: the boundary condition at the edge
of the drum head. For simplicity, we assume that this bc is ¢, (p,,4,t)=0, where p,,

is the radius of the drumhead. Applying this bc to Eq. (17) then gives us

0=G,,J, (ap,) [En cos(ng)+F, sin(n¢)][2a cos(act)+ B, sin(act)] . (18)

So how can Eq. (18) be satisfied? The only nontrivial way is to require that a be such
that J, (ap,)=0. Now, each Bessel function J, has an infinite number of discrete

zeros (see the figure on p. 5 of Lecture 27 notes) so that there are an infinite number
of discrete values of a (which are different for each n) that will satisfy Eq. (18).
Unfortunately, in contrast to the Cartesian coordinate example specified by Eq. (15),
there are no nice, simple formulae for the zeros of the Bessel functions. Nonetheless,
the zeros can be found numerically.

A. n=0 Normal Modes
We first look at normal mode solutions specified by n=0. For these solutions the
Bessel function J,(s) comes into play. The zeros of this function are equal to 2.405,

5.520, 8.654, 11.791, ...* Thus, the bc will be satisfied for

1
a=0.2405 (10
a=0.5520
a=0.8654
a=1.1791
0.5
=)
=
=
=]
ob—— Y\ N/ /L N\
—0.5
0 2 4 6 8 10

rho

4 The zeros are tabulated in Handbook of Mathematical Functions by Abramowitz and Stegun (where else?).
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ap, =2.405, 5.520, 8.654, 11.791, ... (20)

This is illustrated in the graph on the previous page, where we have set p,=10.
Notice that J,(ap) is indeed equal to zero at p = p, for each value of a given by Eq.
(20).

Let's now look at the complete solution for n=0. Simplifying Eq. (17) we can write
the n =0 normal modes as

4o, (pa P, t) =Gy, (ain) Eo I:Z()i COS(aOiCt)+ EO:’ Sin(aOiCt)] > (21)

where a,,p, is the i'th zero of J,(s). Notice that in Eq. (21) we have changed the
labeling of the solution; we now label the normal modes with two integers: the first

73 z4
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(=0) corresponds to n, and the second (i) labels the value of a that makes the
solution vanish at the boundary. Notice that the only spatial variable in Eq. (21) is p:
the dependence on ¢ is gone. Snapshots of first four normal-mode solutions are

shown on the previous page. The class web site has animated (time dependent)
versions of these solutions. As evident in the animations [and should be evident from
Eq. (21)], these solutions are radially symmetric versions of standing waves.

B. n =1 Normal Modes

For any other value of n, the normal modes are found in essentially the same manner.
We must again satisfy the bc at the edge of the drum head, which determines the
values of a. For n=1 the zeros of J,(s) are 3.832, 7.016, 10.173, 13.325, ... Thus, for

n=1 the boundary condition is satisfied for

ap, =3.832,7.016, 10.175, 13.325, ... (22)

This is illustrated in the following figure.

J1(arho)

rho

a=10.3832
a=0.7016
a=1.0173
a=13325

For the complete solution we thus have

41,(p.8,1) = G () [E, cos(p)+ F; sin(p)][, cos(acr)+ B, sin(a,cr)] . (23)
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Because the ¢ dependence is no longer trivial, this solution is a bit more complicated
than that for n=0. For n=0 the disappearance of ¢ resulted in only one linearly
independent solution (in terms of spatial variables — there are still two linearly
independent solutions if one considers time). Here, however, the cos(¢) and sin(g)
solutions are linearly independent. For simplicity, let's just consider the solution with
F, =0, which leaves only the cos(¢) term. Then we have

q., (,0, ¢at) = Gl,iJl (alilo) El COS(¢)[ZI' Cos(aliCt)+ EI Sin(aliCt)] . (24)

The following figure shows snapshots of this solution. Animated versions are again
available on the class web site.

z3 74
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IV. Concluding Remarks

That is it for separation of variables (until you run into them again in some later
course, or perhaps while doing some researchl). Summarizing, we have seen that we
can obtain solutions to the wave equation in three different coordinate systems using
this technique. Sometimes these solutions are simple, sometime they are not so
simple, at least in terms of functions with which you may be familiar. Each solution is
labeled by three independent separation constants, which may or may not be
constrained to certain values. Because the ordinary differential equations that give us
these solutions are homogeneous and linear, there are also undetermined
multiplicative factors associated with each part of the solution. Often (at least) some
of the separation constants and the multiplicative factors are determined by physical
considerations, such as imposed boundary conditions. In the example that we just did
we saw that the parameter a must take on discrete values in order for the boundary
condition at the edge of the drumhead to be satisfied.

While separation-of-variables solutions can be interesting in their own right (as in the
case of the drumhead modes), I'll again remind you that they are also quite useful
because they can be used to construct a basis for any solution to the wave equation,
much as we previously discussed for the 1D wave equation. This point has been
previously discussed in Sec. III of the Lecture 19 notes.

Exercises

*23.1 Using the definition of s and the chain rule, derive Eq. (7) from Eq. (6). (Hint:
you may wish to review the Lecture 21 notes.)

*#23.2 'The figure on p. 2 indicates that ;,(0)=0. Using Eq. (10e) show that this is

indeed the case.

*23.3 The two linearly independent combinations of the spherical Bessel functions
hl(l)(s) = j,(s)+iv,(s) and hl(Z)(S): Jils)=iy(s)

are know as spherical Bessel functions of the #hird kind. Using these definitions and
Eq. (10), express 2V(s) and 2?(s) in terms of the functions e* and e

*23.4 Normal Modes Inside a Sphere.

Starting with Eq. (12) find all normal-mode solutions to the wave equation inside a
sphere that satisfy all of the following conditions: the solutions are (1) real, (2)
spherically symmetric, (3) finite everywhere, and (4) vanish on the boundary of the
sphere, which has a radius of 7.
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