Lecture 22 Phys 3750

Separation of Variables in Spherical Coordinates

Overview and Motivation: We look at separable solutions to the wave equation in
one more coordinate system — spherical (polar) coordinates. These coordinates are
most useful for solving problems with spherical symmetry.

Key Mathematics: Spherical coordinates, the chain rule, and associated Legendre
tunctions (including Legendre polynomials).

I. Spherical Coordinates and the Wave Equation

As in the case of the cylindrical-coordinates version of the wave equation, our first job
will be to express the Laplacian V? in spherical coordinates (r,8,¢), which are defined
in terms of Cartesian coordinates (x, y,z) as

r=yx*+y*+z%, (1a)

0 = arccos —————— , (1b)
X2+ Y+ z?

¢ = arctan Xj . (1c)
X

The diagram at the top of the next page graphically illustrates these coordinates for
the vector r. The coordinate r is the length of r; the coordinate 6 (known as the
polar angle) is the angle of the vector r from the z axis; the coordinate ¢ (known as

the azimuthal angle) is the angle of the xy-plane projection of r from the x axis to
the y axis. Notice that the coordinate ¢ is also used in cylindrical coordinates.

To write V2 f (where f is some function of r, 8, and ¢) in spherical coordinates we
go through the same procedure as we did for cylindrical coordinates. We think of f
as a function of x, y,and z through the new coordinates r, 8, and ¢

[ = flrx..2).6(x,y.2), 4(x. y.2)]

and then re-express

_&f &f &S o

VZ
S ox*  oy* 0z?
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in terms of the new coordinates using the chain rule. For example, to re-express the
x -derivative term we first use the chain rule to write

o _dfor of o0 of 0p 3)
Ox Orox 060 ox O0¢ Ox

Using Eq. (3) we can then express the second derivative as

52f_£(@j_i(@@+1%+1%J @)
ox*  ox\ox) ox\orox 00 ox ¢ ox )

and then using the chain rule again we can write

0 _(8rar 000 81 ep\ar o o
Ox? or* ox 060r Ox O¢or Ox )Oox Or Ox*
2 2 2 2
(& o @ro0 of ep\00 o 00 5
orof ox 060* Ox 0¢0o0 ox ) ox 00 Ox?
(8o 000 0fos\es o o
Orog Ox 060¢ ox O¢P? Ox ) Ox O¢ Ox*

Pretty ugly, eh? Actually, if you scrutinize Eq. (5) you will see that there is a bit of

symmetry present: switching any of the spherical coordinates results in the same

equation.
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Although we will not go through the rest of the procedure, you should recall that
there are two types of terms in Eq. (5). There are derivatives of f with respect to the
new variable (which remain unchanged) and there are derivatives of the new variables
with respect to the old variable x. We must calculate these second type of derivatives
and then express them in terms of the new variables using Eq. (1). If we go through
this procedure for all three terms in the Laplacian and sum everything up, we end up
with the spherical-coordinates expression for the wave equation

10%¢ 1 0(,0 1 o[ . 0 1 8
T_gz_z_(rz_q}L T —[Sm(@)—q}f#—z 6)
o ror or) r’sin()00 00] r*sin*(0) o¢

II. Separation of Variable in Spherical Coordinates
As before we look for separable solutions to the wave equation by assuming that we
can write q(r, 0, ¢,t) as a product solution

a(r,0,.1)= R(r)0(0)@($)T(¢). @
Substituting this into Eq. (6) and dividing the result by R(r)®(8)®(¢)7(¢) yields

1 7" 1 5 or) 1 1. Ry 1 (0}
—_——= R — )| +—m———.
c2 T 7r’R (r ) " r? sin(@) ® [sm( ) ] " r? sinz(é’) ()

(8)

A. Dependence on Time

As with Cartesian and cylindrical coordinates, we again make the argument that the
rhs of Eq. (8) is independent of ¢, and so the lhs of this equation must be constant.
As with cylindrical coordinates we call this constant —k* (where we are thinking of k
as real) and so we again have

"+ T =0, 9)
which has the two linearly independent solutions,

TE(t)=Tyet . (10)
B. Dependence on ¢

Equating the rhs of Eq. (8) to —k*, multiplying by r?sin?(9), and doing some
rearranging of terms gives us
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CD”__22‘2 _M 2 ',_Sin—@ in T
o = kersin?(0)- S5 SR - = sin(0)r] (11)

which separates out the ¢ dependence from » and 6. Equating the lhs of Eq. (11) to
the constant —m? gives us the equation for @'

Q" +m*®d =0, (12)
which, yet again, is the harmonic oscillator equation. Equation (12) has the solutions

@} (¢) = Doe. (13)
Again, because we require continuous solutions as a function of ¢, we must restrict
m to integer values, m=0,+1,+2,... . Note that the dependence on ¢ is exactly the
same as in the cylindrical-coordinates case.

C. Dependence on 6.

The last variable that we will deal with today is the polar angle 8. If we now equate
the rhs of Eq. (11) to —m?, divide by sin?(@), and do a bit of rearranging, we end up
with

sin(19)® [sin(0)©] '——Sh’:zz(e) = —%(rZR’)' — k2, (14)

which separates the @ and r variables. Each side of this equation is a constant, which
by convention is taken to be —/(/+1). This results in the differential equation for
6(0)

1 ) Y m? 3
m[sm(@)@ |+ {1(1 +1)— — (9)}9 =0 (15)

This is definitely not the harmonic oscillator equation! It is however, close to the
standard form of another well known equation. To put Eq. (15) in this standard form
we make the change of variables s(6) = cos(d). We now think of ® as a function of @
through the variable s as ® = ©[s(0)], and we write the derivatives of @ as

! You may ask why we do we use —m? for spherical coordinates when we used —n? for cylindrical
coordinates? I have no idea.
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d® de ds d@ “n [ ]
- 16
40 ds do ds y (162)

and

(d@ ds] (dsj +d® d’s
7= T
do ds do do ds do* (16b)

O )+ LOLy]

ds

ds2

Substituting Eq. (16) into Eq. (15) yields, after a bit of algebra,

2

(1_sz)@"(s)_zs@'(s){z(z+1)_ = 2}@@):0. a7
-5

This equation is known as the associated Legendre equation. As with all second-

order linear, ordinary differential equations, there are two linearly independent

solutions. These solutions are know as associated Legendre functions of the first

m=0 m=2
20,
1 I I I ] I I I
P(0,0,%) B
— P(2,2,x) 10
P(1,0,%) S
— P(3,2,%)
P(2,0,%) —_ 0
— o 7 P(4,2,%)
P(3,0,%) —
e P(5,2,%)
P(4,0,x) — -10 —
-1 ' ! ' -0 | | |
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X
m=1 m=3
4 T T T 200 T T T
P(1,1,%) 2 m P(3,3,x) 100~
P(2,1,x) P(4,3,%)
—_ i _— 0
P(3,1,%) 0 P(5,3,%)
P(4,1,%) P(6,3,%)
— LB —  -100
- ! ! ! =200 ' ' '
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
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and second kind, which are denoted P"(s) and Q) (s), respectively. Usually we are
interested in only the P"(s) solutions because the Q" (s) solutions diverge as s — +1.

The figure on the previous page plots some of the P"(s) functions for various values

of I and m . Notice that these functions are plotted for —1<s<1 because this
corresponds to 0<6 <7, the range of the polar angle 8. The following statements
summarize some key feature of the associate Legendre functions, some of which are
evident in the figure.

() For the P"(s) solutions to Eq. (17) to remain finite, the parameter / must be an
integer and m, which is already an integer, must satisfy |m|</. (You are already likely

familiar with this result from quantum mechanics, where the angular parts of the
separable solutions of the Schrédinger in spherical coordinates are identical to the
solutions here.)

(i) PFor m=0 (azimuthal symmetry) the solutions PB(s)=P(s) are known as

Legendre polynomials. These functions are polynomials in s of order /. The first
four Legendre polynomials are

RO)=1,  RE)=s,  RE)=36r-1,  AlE)=360-3) (18- (18d)

(27 A nice simple formula for calculating the Legendre polynomials, known as
Rodrigues' formula, is

1 d'(s2-1)
R(s)=5r (;SI ) (19)

(&) For the associated Legendre functions Rodrigues' formula generalizes to

. ~ 1 ~ 2 d‘m‘H Y
b (S)_zl_l!(l s?) W(Sz 1. (20)

(v) The first few m =0 Legendre functions of the second kind can be written as

-1, (1 3
QO(S):%InGj—jj, Ql(s):%m(t—jj—l, Qz(s)=3s4 h{:zj—% (21a) - 21¢)
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(v)) For 121 the m=0 Legendre functions of the second kind can be expressed in
terms of the Legendre functions of the first kind as

0/6)= 3212 )- 3 Le (6)r60) @)

I-s) olm

The following figure plots the first few of these functions. Notice that they all diverge
as |s|—>1, although because the divergence involves the logarithm function, the

divergence is very slow, as the graph on the rhs of the figure illustrates.

Qu(x1) O

Q(1,x1)
Q2. x|
Q(3,x1)

Q(4,x1)
— Lk

1 1
0.98 0.985 0.99 0.995 1

X x1

As with the Bessel functions, more entertaining facts about associated Legendre
functions can be found in Handbook of Mathematical Functions by Abramowitz and
Stegun or in the online NIST Digital 1ibrary of Mathematical Functions.

Now that we have some idea of the behavior of these functions, we can get back to
our solution of the wave equation. Because s = cos(d) the solutions to Eq. (15) are

ey, (6)=0, P"(cos(9)) and o7, 6)= ©, 0 (cos(8)), (23)

(or some linear combination of the two solutions) Because they remain finite, we are
usually exclusively interested in solutions involving Legendre functions of the first
kind. The figure at the top of the next page plots some of the P (cos(d)) functions
as a function of #. Notice that they are similar, but not identical to the functions

plotted on p. 5.

D M Riffe -7- 4/3/2013



Lecture 22 Phys 3750

P(0,0, cos(0
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0

Exercises

*22.1 Calculate the change-of-coordinates derivatives dr/ox, d6/ox, and d¢/ox and
express them as functions of the new variables.

*#22.2 Consult the figure on p. 5. For the function P"(s), how many zero crossings
of are there for —1< s <1? That is, deduce the formula for the number of zero
crossings as a function of / and m.

*#22.3 The Legendre polynomials P°(x) can be used as a set of orthogonal basis

functions on the interval —1<x<1. Using the standard definition of the inner
product, show that Py, B, and P, are all orthogonal. Find normalized versions of

each of these functions.

*22.4 Using Eq. (7), derive Eq. (8) from Eq. (6).
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