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The Dirac Delta Function 
 
Overview and Motivation:  The Dirac delta function is a concept that is useful 
throughout physics.  For example, the charge density associated with a point charge 
can be represented using the delta function.  As we will see when we discuss Fourier 
transforms (next lecture), the delta function naturally arises in that setting.   
 
Key Mathematics:  The Dirac delta function! 
 
I.  Introduction   
The basic equation associated with the Dirac delta function ( )xδ  is  
 

 ( ) ( ) ( )0fdxxfx =∫
∞

∞−

δ , (1) 

 
where ( )xf  is any function that is continuous at 0=x .  Equation (1) should seem 
strange:  we have an integral that only depends upon the value of the function ( )xf  at 

0=x .  Because an integral is "the area under the curve," we expect its value to not 
depend only upon one particular value of x .  Indeed, there is no function ( )xδ  that 
satisfies Eq. (1).  However, there is another kind of mathematical object, known as a 
generalized function (or distribution), that can be defined that satisfies Eq. (1).   
 
A generalized function can be defined as the limit of a sequence of functions.  Let's 
see how this works in the case of ( )xδ .  Let's start with the normalized Gaussian 
functions 
 

 ( ) 2nx
n enxg −=

π
. (2) 

 
Here 21 σ=n , where σ  is the standard Gaussian width parameter.  These functions 
are normalized in the sense that their integrals equal 1, 
 

 ( ) 1=∫
∞

∞−

dxxgn  (3) 

 
for any value of n  (>0).  Let's now consider the sequence of functions for 

K,3,2,1=n  , 
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 ( ) 21
1

xexg −=
π

, ( ) 22
2

2 xexg −=
π

, … , ( ) 2100
100

100 xexg −=
π

, … (4) 

 
What does this sequence of functions look like?  We can summarize this sequence as 
follows.  As n  increases 
 
 (a)  ( )0ng  becomes larger; 
 (b)  ( )0≠xgn  eventually becomes smaller; 
 (c)  the width of the center peak becomes smaller; 

 (d)  but ( ) 1=∫
∞

∞−

dxxgn  remains constant.   

 
The following figure plots some of the functions in this sequence. 
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Let's now ask ourselves, what does the ∞=n  limit of this sequence look like?  Based 
on (a) through (d) above we would (perhaps simplistically) say 
 
 (a)  ( ) ∞=∞ 0g ; 
 (b)  ( ) 00 =≠xgn ; 
 (c)  the width of the center peak equals zero; 
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 (d)  but ( ) 1=∫
∞

∞−

∞ dxxg .   

 
Note that (a) and (b) are not compatible with (d) if )(xg∞ is a function in the standard 
sense, because for a function (a) and (b) would imply that the integral of )(xg∞  is zero. 
 
So how should we think of this sequence of functions, then?  Well, the sequence is 
only really useful if it appears as part of an integral, as in, for example, 
 

 ( ) ( ) ( )∫∫
∞

∞−

−

∞→

∞

∞−
∞→

= dxxfedxxfxg nxn
nnn

2

limlim π . (5) 

 
Let's calculate the integral, and then the limit in Eq. (5).  The following figure should 
help with the calculation. 
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As n  get large, ( ) 2nxn

n exg −= π  becomes narrower such that it only has weight very 
close to 0=x .  Thus, as far as the integral is concerned, for large enough n  only ( )xf  
at 0=x  is important.  We can thus replace ( )xf  by ( )0f  in the integral, which gives us 
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 ( ) ( ) ( ) ( )01lim0lim0lim 22 ffdxefdxxfe
n

nxn
n

nxn
n

===
∞→

∞

∞−

−

∞→

∞

∞−

−

∞→ ∫∫ ππ  (6) 

 
Thus, the integral on the lhs of Eq. (1) is really shorthand for the integral on the lhs of 
Eq. (6), That is, the Dirac delta function is defined via the equation 
 

 ( ) ( ) ( )∫∫
∞

∞−

−

∞→

∞

∞−

= dxxfedxxfx nxn
n

2lim πδ  (7) 

 
Now often (as physicists) we often get lazy and write 
 
 ( ) 2lim nxn

n
ex −

∞→
= πδ , (8) 

 
but this is simply shorthand for Eq. (7).  Eq. (8) really has no meaning unless the 
function 2nxn e−π  appears inside an integral and the limit 

∞→n
lim  appears outside the same 

integral.  However, after you get used to working with the delta function, you will 
rarely need to even think about the limit that is used to define it.   
 
One other thing to note.  This particular sequence of functions ( ) 2nxn

n exg −= π  that we 
have used here is not unique.  There are infinitely many sequences that can be used to 
define the delta function.  For example, we could also have defined ( )xδ  via 
 

 ( ) ( )
x
nxx

n

sin1lim
π

δ
∞→

= . (9) 

 
The sequence of functions ( ) ( )xnx πsin  is illustrated in the figure at the top of the 
next page. 
 
Notice that the key features of both of these two difference sequences are expressed 
by (a) – (d) at the top of page 5.   
 
II.  Delta Function Properties   
There are a number of properties of the delta function that are worth committing to 
memory.  They include the following, 
 

 ( ) ( ) ( )xfdxxfxx ′=′−∫
∞

∞−

δ , (10) 
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 ( ) ( ) ( )0fdxxfx ′−=′∫
∞

∞−

δ  (11) 

 
 ( ) ( )xaax δδ =  (12) 
 
The proof of Eq. (10) is relatively straightforward.  Let's change the integration 
variable to xxy ′−= , dxdy = , which gives 
 

 ( ) ( ) ( ) ( )∫∫
∞

∞−

∞

∞−

′+=′− dyxyfydxxfxx δδ . (13) 

 
Then using Eq. (1), we see that Eq. (10) is simply equal to ( )xf ′ .  QED. 
 
Let's also prove Eq. (12).  We do this in two steps, for 0>a  and then for 0<a .   
(i)  First, we assume that 0>a .  Then 
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 ( ) ( )∫∫
∞

∞−

∞

∞−

= dxaxdxax δδ  (14) 

 
Changing integration variable axy = , adxdy = , this last equation becomes 
 

 ( ) ( )∫∫
∞

∞−

∞

∞−

= dyyadxax δδ  (15) 

 
and changing variables back to x  via yx = , dydx =  gives 
 

 ( ) ( )∫∫
∞

∞−

∞

∞−

= dxxadxax δδ  (16) 

 
and so for 0>a  we have ( ) ( )xaax δδ = . 
 
(ii)  We now assume 0<a .  Then we have  
 

 ( ) ( )∫∫
∞

∞−

∞

∞−

−= dxaxdxax δδ  (17) 

 
Changing integration variable axy −= , adxdy −= , this last equation becomes 
 

 

( ) ( )

( )

( )∫

∫

∫∫

∞

∞−

∞

∞−

−∞

∞

∞

∞−

=

=

−=

dxxa

dyya

dyyadxax

δ

δ

δδ

 (18) 

 
and so for 0<a  we also have ( ) ( )xaax δδ = . QED.   
 
We leave the proof of Eq. (11) as an exercise. 
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III.  Fourier Series and the Delta Function   
Recall the complex Fourier series representation of a function ( )xf  defined on 

LxL ≤≤− , 
 

 ( ) ∑
∞

−∞=

=
n

Lxni
n ecxf π , (19a) 

 

 ( )∫
−

−=
L

L

Lxin
n dxexf

L
c π

2
1 . (19b) 

 
Let's now substitute nc  from Eq. (19b) into Eq. (19a).  Before we do this we must 
change the variable x  in either Eq. (19a) or (19b) to something else because the 
variable x  in Eq. (19b) is just a (dummy) integration variable.  Changing x  to x′  in Eq. 
(19a) and doing the substitution we end up with 
 

 ( ) ( )∑ ∫
∞

−∞=

′

−

−










=′
n

Lxni
L

L

Lxin edxexf
L

xf ππ

2
1  (20) 

 
Let's now switch the integration and summation (assuming that this is OK to do).  
This produces 
 

 ( ) ( ) ( )∫ ∑
−

∞

−∞=

−′












=′

L

L n

Lxxni dxxfe
L

xf π

2
1  (21) 

 
If we now compare Eq. (21) to Eq. (10), we see that we can identify another 
representation of the delta function 
 

 ( ) ( )∑
∞

−∞=

−′=′−
n

Lxxnie
L

xx πδ
2
1  (22) 

 
or setting 0=′x  we have 
 

 ( ) ∑
∞

−∞=

−=
n

Lxnie
L

x πδ
2
1  (23) 

 
So how is this equation related to the delta function being defined as the limit of a 
sequence of functions? Well, we can re-express Eq. (23) as a sequence of functions via 
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 ( ) ∑
−=

−

∞→
=

m

mn

Lxni

m
e

L
x πδ

2
1lim . (24) 

 

The following figure plots ∑
−=

−
m

mn

Lxnie
L

π

2
1  for several values of m  (for 2=L ).  Notice 

that these functions are quite similar to the function ( ) ( )xmx πsin  plotted above. 1 
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However, there is one important difference between these two sequences of functions.  
Because the functions Lxnie π−  that appear in the sum in Eqs. (23) and (24) all repeat 
with on an interval of length L2 , Eq. (24) is actually a series of delta functions, 
centered at K,6,4,2,0 LLLx ±±±=  .  This is illustrated in the next figure, where we 
have expanded the x  axis beyond the limits of L−  to L .  Thus, the equality expressed 
by Eq. (23) or (24) is only valid on the interval LxL ≤≤− .   
 

                                                 
1 We have changed the n  to m  in the ( ) ( )xnx πsin  functions because we are now using m  to label the 
functions in the sequence.    
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Exercises 
 

*15.1  Equation (11), ( ) ( ) ( )0fdxxfx ′−=′∫
∞

∞−

δ , can be taken as the definition of the 

derivative of the delta function.  Treating the delta function as a normal function, 
show that Eq. (11) is true.  (Hint:  use integration by parts.)   
 

*15.2  Show that the equation ( ) ∑
−=

−

∞→
=

m

mn

Lxni

m
e

L
x πδ

2
1lim  can be re-expressed as 

( ) ∑
−=

∞→






=

m

mn
m L

xn
L

x πδ cos
2
1lim .  This is perhaps more appealing because the delta function 

is a real function and the rhs is now explicitly real.   
 
*15.3  Find another sequence of functions, not based on either the Gaussian or 

( ) xxsin  functions, that has as its limit the delta function.   


