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Linear Operators / Functions as Vectors 
 
Overview and Motivation:  We first introduce the concept of linear operators on a 
vector space. We then look at some more vector-space examples, including a space 
where the vectors are functions. 
 
Key Mathematics:  More vector-space math! 
 
I.  Linear Operators 
A. Definition and Examples 
The essential nature of a linear operator is contained in its name.  The operator part  
of the name means that a linear operator A  operates on any vector u  (in the space of 
interest) and produces another vector v  in the space.  That is, if u  is a vector, then 
 
 uv A=  (1) 
 
is also vector.  The linear part of linear operator means that 
 
 ( ) vuvu AbAabaA +=+  (2) 
 
is satisfied for all scalars a  and b  and all vectors u  and v  in the space.   
 
Linear operators come in many different forms.  The ones of interest for any given 
vector space depend upon the problem being solved.  When dealing with a vector 
space of finite dimension, we can always use standard linear-algebra notation to 
represent the vectors as column matrices of length N  and the linear operators as  
square matrices of size NN × .  For 3=N , for example, Eq. (1) can be written as 
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where iv , iu , and ijA  are the (scalar) components of v , u , and A , respectively, in 
some particular orthonormal basis. 1   
 
As we shall see below, sometimes we are interested in a vector space where the 
vectors are functions.  In that case the linear operators of interest may be linear 

                                                 
1 For example, if dealing with vectors in real space, the elements in a column vector are often the scalar 
components (also known as Cartesian coordinates) of that vector in the x̂ , ŷ , ẑ  basis.   
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differential operators.  An example of a linear differential operator on a vector 
space of functions of x  is dxd .  In this case Eq. (1) looks like 
 

 ( ) ( )xf
dx
dxg = , (4) 

 
where ( )xf  and ( )xg  are vectors in the space and dxd  is the linear operator. 
 
B. Eigenvalue Problems 
An important vector-space problem is the eigenvalue problem.  We already have some 
experience with this problem as part of the process of finding the normal modes of 
the coupled oscillators.  Simply stated, the eigenvalue problem is this:  for a given 
linear operator A , what are the vectors u  and scalars λ  such that 
 
 uu λ=A  (5) 
 
is satisfied?  These vectors u  and scalars λ  are obviously special to the operator:  
when operated on by A , these vectors only change by the scale factor λ .  These 
special vectors u  are known as eigenvectors and the values of λ  are known as 
eigenvalues.  Each eigenvector u  has associated with it a particular eigenvalue λ .   
 
For a vector space of N  dimensions (where we are using standard linear algebra 
notation) the eigenvalues are solutions of the characteristic equation 
 
 ( ) 0det =− IA λ , (8) 
 
where I  is the identity matrix.  As we did when solving the 2=N  and 3=N  
(homework) coupled oscillator problems, substituting the eigenvalues (one at a time!) 
back into Eq. (5) allows us to find the eigenvectors u .   
 
If the (finite dimension) vector space is complex then Eq. (8) always has solutions.2  
Now here is the cool thing.  If the operator is self-adjoint (also know as Hermitian), 
which means that its matrix elements satisfy *

ijji AA = , then  
 (i)  its eigenvalues are real, 
 (ii) its eigenvectors span the space, and 
 (iii) the eigenvectors with distinct eigenvalues are orthogonal. 
Thus, if the operator A  is self-adjoint and all eigenvalues are distinct, then those 
eigenvectors form an orthogonal basis for the space.  If the eigenvalues are not 

                                                 
2 This result is known as the fundamental theorem of algebra. 
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distinct, an orthogonal basis can still be formed from the eigenvectors. (it just takes a 
little bit of work.) 
 
Often, however, the eigenvalue problem of interest is on a real vector space.  In this 
case, if A  is symmetric (that is, the matrix elements of A  satisfy jiij AA = ), then Eq. 
(8) will have N  real solutions and, again, the associated eigenvectors u  can be used to 
form a basis for the vector space.   
 
A famous eigenvalue problem from quantum mechanics is none other than the time-
independent Schrödinger equation  
 
 ψψ EH = , (6) 
 
which is an eigenvalue problem on a vector space of functions.  Here the vectors are 
the functions ( )zyx ,,ψ ; the operator is the differential operator 
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and the eigenvalues are specific values of E .3  This is perhaps the most important 
equation in quantum mechanics because the (normalized) eigenvectors describe the 
(spatial part of the) states of the system with a definite value of energy, and the 
eigenvalues E  are the energies of those states. 
 
II.  The Coupled Oscillator Problem Redux 
Let's revisit the coupled oscillator problem to see how that problem fits into our 
discussion of vector spaces.  We first review the associated eigenvalue problem that 
we solved when finding the normal modes, and then we make some remarks about 
the initial-value problem. 
 
A. The Eigenvalue Problem 
Recall, in that problem we started with N  equations of motion (one for each object) 
 
 ( ) 02~

11
2 =+−− +− jjjj qqqq ω&& , (9) 

 
( Nj ,,1K= ), where ( )tq j  is the time-dependent displacement of the j th oscillator.  
We then looked for normal-mode solutions 
 

                                                 
3 The function ( )zyxV ,,  is the classical potential energy a particle of mass m .   
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 ( ) ti
jj eqtq Ω= ,0 , (10) 

 
where all N objects oscillate at the same frequency Ω .  By assuming that the solutions 
had the form of Eq. (10), the N  coupled ordinary differential equations became the 
N  coupled algebraic equations 
 
 ( ) 02~

1,0,01,0
2

,0
2 =+−+Ω +− jjjj qqqq ω , (11) 

 
which we rewrote as 
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Notice that this is exactly of the form of Eq. (5) (the eigenvalue problem) where the 
vectors are −N row column matrices, the linear operator A  is an NN ×  matrix, and 
the eigenvalues λ  are the squared frequencies 2Ω .   
 
As we previously discovered in solving that problem there are N  eigenvectors,  
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( Nn ,,1K= ), and the nth eigenvector has the eigenvalue 
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Notice that the eigenvalues are real, as they should be for a symmetric operator.  Also, 
because the eigenvalues are distinct, the eigenvectors from an orthogonal basis for the 
space. 
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B. The Initial Value Problem 
As part of solving the initial-value problem for this system, we ended up with the 
equation4 
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which we needed to solve for the coefficients ( )naRe .  Let's now place the previous 
solution of Eq. (15) for the coefficients ( )naRe  within the context of the current 
discussion of vector spaces.5  As we talked about in the last lecture, if we write a 
vector v  as a linear combination of orthogonal vectors nu  
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then the coefficients nv  in are given by 
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= . (17) 

 
For the example at hand, Eq. (15) is equivalent to Eq. (16), but in order apply Eq. (17) 
to find the coefficients ( )naRe  in Eq. (15), we need the definition of the inner product 
of two vectors for this vector space.  For any N  dimensional vector space the inner 
product between two vectors w  and v  can be written as (See Exercise 14.5)  
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where nw  and nv  are the components of the vectors w  and v  in the same basis.  
Notice that the elements of the row matrix in Eq. (18) are the complex conjugates of 
                                                 
4 This is Eq. (10) of the Lecture 10 notes.   
5 Note that Eq. (15) says, at its most basic level, that the eigenvectors [Eq. (13)] form a basis for the space of 
initial displacements of the objects (which can be any set of N real numbers). 
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the elements of u .  Of course, if we are dealing with real vector, then the complex 
conjugate is simply the element itself.  Note that Eq. (18) can be written in more 
compact form as 
 

 ( ) ∑
=

=
N

j
jj vw

1

*, vw . (19) 

 
Using the form of the inner product in Eq. (19), the application of Eq. (17) to the 
coupled oscillator problem is thus6 
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III.  Vectors Spaces and Fourier Series 
The last vector-space example is Fourier Series.  Recall, the complex Fourier-series 
representation of a function ( )xf  defined on the interval L−  to L  is 
 

 ( ) ∑
∞

−∞=

=
n

Lxni
necxf π , (21a) 

 
where the coefficients nc  are given by 
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If you have been paying attention to this point (i.e, if you are still awake), then you 
should be thinking "Ah ha! Equation (21) says that we can write the function ( )xf  as 
a linear combination of the (basis!) functions Lxnie π  with coefficients nc .  Looks like a 
vector space to me!  And ah ha, again!  It seems that somehow Eq. (21b) is the 
equivalent of Eq. (17), where the coefficients are expressed in terms of inner products 
on this space."  But likely you are now asleep and thinking about other things.   
 
But if you were awake, you would be entirely correct.  Let's see that this is the case.  
The vectors in this space are indeed functions on the interval L−  to L , and one set of 

                                                 
6 Equation (20) is Eq. (18) of the Lecture 10 notes. 
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basis vectors nu  is indeed the set of functions ( ) Lxni
n exu π= , ∞<<∞− n .  So what is 

the inner product on this space that makes these basis vectors orthogonal?  You 
actually saw the inner product back in Lecture 12 before you knew it was an inner 
product, so let me remind you.  Denoting, for example, a function ( )xf  as the vector 
f ,  we define the inner product ( )fg,  in this space as  
 

 ( ) ( ) ( )dxxfxg
L

L
∫
−

= *,fg . (22) 

 
Again, note the complex conjugate in the definition.  Also notice the similarity of Eqs. 
(19) and (22).  Using Eq. (22), Eq. (21) can be written in vector-space notation as 
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Lastly, let's revisit the idea of an orthonormal basis within the context of Fourier 
series.  Recall, a normalized (or unit) vector û  is defined by ( ) 1ˆ,ˆˆ == uuu , and we 
can normalize any vector u  via 
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=ˆ . (25) 

 
Let's find the normalized version of the basis functions ( ) Lxni

n exu π= .  Calculating 
( )nn uu ,  we have  
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We can thus turn our orthogonal basis into an orthonormal basis by using the normalized 
vectors 
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If we now write a vector in this space as a linear combination of these normalized 
basis vectors, 
 

  ∑
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=
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nnc uf ˆ , (28a) 

 
 ( )fu ,ˆ nnc =  (28b) 
 
then the functional expression of Eq. (28) results in the Fourier series being written as 
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To some, the Fourier Series written as Eq. (29) is more appealing because it has a 
certain symmetry that Eq. (21) lacks.   
 
Exercises 
 

*14.1  Consider the operator 







=

lk
ji

A  on a two dimensional vector space.  Show 
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operator is linear, i.e., that it satisfies Eq. (2).   
 
*14.2  Show that for any two scalars a  and b  and any two functions ( )xf  and ( )xg , 

that the differential operator 
dx
di  is linear, i.e., that it satisfies Eq. (2). 

 
*14.3  In solving the 3=N  coupled oscillator problem, we found the three 
eigenvectors to the associated eigenvalue problem, which can be written as 
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**14.4  Consider the time independent Schrödinger equation eigenvalue problem 

ψψ EH = , where H  is the operator 2
2
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−
h .  This is the (1D) quantum 

mechanical harmonic-oscillator problem.  The solutions (eigenvectors and eigenvalues) 
of this problem can be written as ( K,2,1,0=n ) 
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(a)  For 0=n  (the ground state), show that ( )x0ψ  is a solution to ψψ EH =  with the 
appropriate eigenvalue.   
(b)  For this vector space, the inner product of two vectors ψ  and φ  is defined as 

( ) ( ) ( )dxxx ψϕ∫
∞

∞−

= *,ψφ .  Show that the 0=n  and 1=n  states are orthogonal. 

(c)  Find the norm of the 0=n  state.  Thus construct the normalized eigenvector 
corresponding to this state.   
(d)  Given that 000 ψψ EH =  and 111 ψψ EH = , find ϕH , where 1100 ψψϕ CC +=  (Here 

00 ≠C  and 01 ≠C  are two  constants.)  Thus argue that the wave function ϕ  is not an 
eigenvector of H  (for any value of E ).   
 
*14.5  Inner product.  Consider two vectors written in terms of some orthonormal 
basis,  
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(a)  Using Eq. (10) of the Lecture 13 notes, show that the inner product ( )vw,  can be 

expressed in terms of the components of the two vectors as ( ) ∑
=

=
N

n

nnvw
1

*, vw . 

(b)  What is the norm of the vector v  expressed in  terms of its components? 
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*14.6  Inner Product and Fourier Series.  Consider two functions expressed as their 
normalized Fourier Series representations,  
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(a)  Starting with these expressions, show that the inner product ( ) ( ) ( )dxxfxg
L

L
∫
−

= *,fg  

can be expressed in terms of the Fourier coefficients nc  and nd  as  ( ) ∑
∞

−∞=

=
n
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*,fg .   

(b)  What is the norm of ( )xf  in terms of its Fourier coefficients? 
 
Notice the similarity of these results and those of Exercise 14.5.  Cool, eh? 


