Intermediate Lab
PHYS 3870

Lecture 5

Comparing Data and Models—
Quantitatively

Non-linear Regression

References: Taylor Ch. 9, 12
Also refer to “Glossary of Important Terms in Error Analysis”
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Intermediate Lab
PHYS 3870

Errors in Measurements and Models
A Review of What We Know
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Quantifying Precision and Random (Statistical) Errors

The “best” value for a group of measurements of the same
quantity is the

Average
What is an estimate of the random error?

Deviations
A. If the average is the the best guess, then
DEVIATIONS (or discrepancies) from best guess are an
estimate of error
B. One estimate of error is the range of deviations.
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Single Measurement: Comparison with Other Data

Density p
. (gram/em?)
1' 30 t 30 _-l'I"L
E Bi- _?E " br- _ + [
3 2 discrepancy =10 = 20 discrepancy =10 16
3 1 i
g A¥- E ¢ gold
E 10 E W | George —— 1 — 15
[ 14
0 0 Ma:tha—_..f C alloy
ia) () - i
13

Comparison of precision or accuracy?
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Single Measurement: Direct Comparison with Standard
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Comparison of precision or accuracy?
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Precent Error =

X Known
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Multiple Measurements of the Same Quantity

Our statement of the best value and uncertainty is:

( <t> = oy) sec at the 68% confidence level for N
measurements

1. Note the precision of our measurement is reflected in the
estimated error which states what values we would expect to
get if we repeated the measurement

2. Precision is defined as a measure of the reproducibility of a
measurement

3. Such errors are called random (statistical) errors

4. Accuracy is defined as a measure of who closely a
measurement matches the true value

5. Such errors are called systematic errors

Intermediate 3870
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Multiple Measurements of the Same Quantity

Standard Deviation

The best guess for the error in a group of N identical randomly distributed measurements is given
by the standard deviation

I 1 L1y —_—
0= oy Tt = B’

this is the rms (root mean squared deviation or (sample) standard deviation

It can be shown that (see Taylor Sec. 5.4) o is a reasonable estimate of the uncertainty. In fact, for
normal (Gaussian or purely random) data, it can be shown that

(1) 68% of measurements of t will fall within <t> + o

(2) 95% of measurements of t will fall within <t> + 2c;

(3) 98% of measurements of t will fall within <t> + 3oy

(4) this is referred to as the confidence limit

Summary: the standard format to report the best guess and the limits within which you
expect 68% of subsequent (single) measurements of t to fall within is <t> * o

Intermediate 3870

UN.VEsn‘sﬁ? Fall 2011 NON-LINEAR REGRESSION Lecture 6 Slide 7



Multiple Measurements of the Same Quantity

Standard Deviation of the Mean

If we were to measure t again N times (not just once), we would be even
more likely to find that the second average of N points would be close to
<t>,

The standard error or standard deviation of the mean is given by...
|

o= | 1 N 2
Tspom = U AN (V-1 Zi=4(t — )

This is the limits within which you expect the average of N addition
measurements to fall within at the 68% confidence limit
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Errors in Models—Error Propagation

Define error propagation [Taylor, p. 45]

A method for determining the error inherent in a derived quantity
from the errors in the measured quantities used to determine the

derived quantity

Recall previous discussions [Taylor, p. 28-29]
|. Absolute error: ( <t>+ o) Sec
I1. Relative (fractional) Error: <t>sec + (oy/<t>)%
[11. Percentage uncertainty: fractional error in % units
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Specific Rules for Error Propogation

Refer to [Taylor, sec. 3.2] for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]
FOr Opest=XpesttYhest the error is dg=0x+3dy
Follows from CIbestigq :(Xbesti é‘)X) i(Ybest iésy): (Xbesti Ybest) i( OX 16y)

2. Multiplication and Division [Taylor, p. 51]
For Obest=Xbpest * Ybest the error is (6(]/ qbest) ~ (SX/ Xbest)+(6y/ ybest)

3. Multiplication by a constant (exact number) [Taylor, p. 54]
For Obest— B(Xbest) the error is (5C|/ qbest) ~ |B| (SX/ Xbest)
Follows from 2 by setting 6B/B=0

4. Exponentiation (powers) [Taylor, p. 56]
FOr Ghes= (Xpest )" the error is (8a/ Qpest) = N (5X/Xpest)
Follows from 2 by setting (0X/Xpest)=(0Y/Ypest)

Intermediate 3870
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General Formula for Error Propagation

General formula for uncertainty of a function of one variable
5q=\g.5x [Taylor, Eq. 3.23]

Can you now derive for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]

2. Multiplication and Division [Taylor, p. 51]

3. Multiplication by a constant (exact number) [Taylor, p. 54]
4. Exponentiation (powers) [Taylor, p. se
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General Formula for Multiple Variables

Uncertainty of a function of multiple variables [Taylor, Sec. 3.11]

1. It can easily (no, really) be shown that (see Taylor Sec. 3.11) for a
function of several variables

aq

|99 aq
&(x,y,z,...)—‘& P OX + 5‘53/ +15, % * [Taylor, Eq. 3.47]

2. More correctly, it can be shown that (see Taylor Sec. 3.11) for a
function of several variables

oqg oq oq
(X, y,z,...)s‘&‘-& + 5‘53/ + ‘E‘-é‘z + ... [Taylor, Eq. 3.47]

where the equals sign represents an upper bound, as discussed above.

3. For a function of several independent and random variables

rea 2 (o 2 o . 2
Ay 22 50X Pl YY) Tla %) T [Taylor, Eq. 3.48]

Again, the proof is left for Ch. 5.
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Error Propagation: General Case

Thus, if xand y are:

a) Independent (determining x does not affect measured y)
b)Random (equally likely for +dx as —0x )
Then method the methods above overestimate the error

Consider the arbitrary derived quantity
g(x,y) of two independent random variables x and .

Expand g(x,y) in a Taylor series about the expected values of x and y
(i.e., at points near X and Y).

leed shifts peak of distribution

L0+ ()] o1

q(x,y) = q(X,

Fixed Distribution centered at X with width o
Error for a function of Two Variables: Addition in Quadrature

2

dq dq ?
s == [[28), o] + [,

Intermediate 3870
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Independent (Random) Uncertaities and

Gaussian Distributions

For Gaussian distribution of measured values which describe
quantities with random uncertainties, it can be shown that (the
dreaded ICBST), errors add in quadrature [see Taylor, Ch. 5]

0q # O0X + 0y
But, 5q = V[(5x)2 + (3y)7]

1. This is proved in [Taylor, Ch. 5]
2.1CBST [Taylor, Ch. 9] Method A provides an upper bound on
the possible errors
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Gaussian Distribution Function
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Figure 5.10. Two normal, or Gauss, distributions.
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Standard Deviation of Gaussian Distribution

X+e
Prob(within o) = L_E G, o) dx (5.32)
See Sec. 10.6: Testing of
— _1__ J‘ITFE-{#-M . {533} Hypotheses
ﬁ - | 5 ppm or ~50 “Valid for HEP=

1% or ~30 “High_ly Significant”

5% or ~20 “Significan&
GT(I} _ 1o “Within errors”;
r lm% _____________________ 99 7% ”;?g%
L 95.4% : . .'
] 1 I
1 | | ! !
k= | 68% : : Il
E sl ! | : :
3 £ | | |
{ | I I 1
: N E | |
| I I ] ]
| ! { | ]
1o 1 1 1 1 ] I N I
Area under curve 0 [ 2 ’ !
0,674

(probability that

—0<x<+0)is 68% - .
t ’0 025 05 075 L0 135 15 175 20 25 30 35 40

Prob (%) l 0O 20 38 55 68 79 8 092 954 088 997 99.95 99.99

Figure s_.l 3. The probability Prob(within te) that a measurement of x will fall within ¢ stan-
derd deviations of the true value x = X. Two common names for this function are the normal 2r-
ror integral and the error function, erf(t).
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Mean of Gaussian Distribution as “Best Estimate”

Principle of Maximum Likelihood

To find the most likely value of the mean (the best estimate of x),
find X that yields the highest probability for the data set.

Consider a data set {X1, X5, X3 ... Xy }

Each randomly distributed with
Prﬂhx,n'{:x:'} = GE,E{:IE} =

o (xi—X)/2e g o—(xi—X)*/2a
o 2 &

The combined probability for the full data set is the product
PT'E"'J.S:,E(ILIE '"IJ'I.T} = PJ"E"'J.S:,E(IJ X, Prﬂ'b.-?,n'{:xz} Ko X Prﬂbﬁ,n'(xﬁ.f}

oc L g (2= 8)%20 o 1 o—(xe—X) 20y, o1 —(xn—2)%/20 _ iﬂ;E o~ (xi—X)%/2c
o

o o o

Best Estimate of X is from maximum probability or minimum summation

N
A Solve for al
Minimize 2 : 2 Best XX
S (x; —X)%/o  derivative E (x; — X) = estimate “bast = :er
= setto 0 i=1 of X

Intermediate 3870
UNIVERSITY Fall 2011
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Uncertaity of “Best Estimates’” of Gaussian Distribution

Principle of Maximum Likelihood

To find the most likely value of the mean (the best estimate of x),
find X that yields the highest probability for the data set.

Consider a data set {X1, X5, X3 ... Xy }

The combined probability for the full data set is the product
Probyg . (x1,%5...xy) = Probyg . (x1) x Probyg .(x5) X ... % Proby . (x)

oc L g2 X208 o 1 —(wa—XPr20 1 —(en-2)2/20 _ ﬁE o—(xi—X)%/ 20

& & o

Best Estimate of X is from maximum probability or minimum summation

N
inimi Solve for il
Minimize . e Best X
sum E (x;—X)*/e¢ derivative E (t;—=X) =0 ogtimate Abesr = :er
= wrst Xsetto0 =1 of X

Best Estimate of o is from maximum probability or minimum summation

Ry il Solve for s Best [7
inimize .— X2 derivative ee Z B
Sum Zl (II X:} fﬂ- Wrst (o) Set tO O PrOb. 526 (e)?t(;mate a-bﬂ-‘?t - ||N (I X} .-’Iﬂ-
= e .
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Weighted Averages

Question: How can we properly combine two or more separate
independent measurements of the same randomly distributed
guantity to determine a best combined value with uncertainty?
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Weighted Averages

The probability of measuring two such measurements is

Prob, (x1,x,) = Prob,(x1) Prob,(x,)

1 x1 — X X, — X
= ——e /2 where y* = IQI 2 3 [(2—)] 2
0'10'2 o o
To find the best value for X, find the maximum Prob or minimum X2
Best Estimate of x is from maximum probibility or minimum summation

Minimize Sum Solve for derivative wrst x setto O  Solve for best estimate of ¥
(x =1k (x -3 11
e[l oS o[l g (e 2 /(e )
o o7 o Oz
This leads to
x _ W1Xq + Wy X _ Z W; X where w. = 1/
W-avg wy + W, W l (0:)7

Note: If w,=w,, we recover the standard result X,,,,4= (1/2) (X;+X5)

1

Finally, the width of a weighted average distribution is = 6y,eig hted avg = T

Intermediate 3870
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Intermediate Lab
PHYS 3870

Comparing Measurements to Linear
Models

Summary of Linear Regression
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Question 1: What is the Best Linear Fit (A and B)?

¥ ¥

*

(a) (b)

Figure B.1. (a) If the two variables y and x are linearly related as in Equation (8.1}, and if
there were no experimental uncertainties, then the measured points (x;, y,) would all lie exactly
on the line y = A + Bx. (b) In practice, there always are uncertainties, which can be shown by
error bars, and the points (x;, ¥;) can be expected only to lie reasonably close to the line. Here,
only y is shown as subject to appreciable uncertainties.

Best Estimate of For the linear model y = A + B x
intercept, A, and
P Intercept: A= IXEy-YIxExy o, = 0y —25
slope, B, pt. NYx2-(Xx)? A Y NY x2-(X x)?
for NS ayoyx s N
i ) _ NYxy-Yx ¥xy _
Linear Regression Slope B =S 08 = 0y s G
or Least Squares-
Fit for Line where oy = \/ﬁZ[YL — (4 + Bx;)]?
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“Best Estimates” of Linear Fit

Consider a linear model for y;, yi=A+BX;

The probability of obtaining an observed value of y; is

Probyp(y1 ...yn) = Proby g(y1) X ... X Proby g (yy)

-—(A+Bx)]

_ 2
= —e™ 2 where y

)
y =

Mz

To find the best simultaneous values for A and B, find the maximum Prob or minimum X2

Best Estimates of A and B are from maximum probibility or minimum summation

Minimize Sum Solve for derivative wrst Aand B setto O Best estimate of A and B

Ei[}’f_(‘:ﬂxf}]z _——Z[y: (A+Bx)]=0 HN+BZI,-=Z}’,-

¥
d 2
%_5_ :[y: (H+EIE}]=[] AZIE—F‘QZIEE:ZIE}FE
¥ =

Intermediate 3870
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“Best Estimates” of Linear Fit

Best Estimates of A and B are from maximum probibility or minimum summation

Minimize Sum Solve for derivative wrst A and B setto O Best estimate of A and B

N =
_N\N i —(A+Bx)) dy: -2 B
IEZ; 7. 2 E:E;[}’i_(ﬂ"‘ﬁxe}]—ﬂ AN+EZIE=Z}f!-

y
3 3 3 N
%EF x:[y;—(A+Bx)]=0 A E I:""AE Xt = E X Vi

Y =
For the linear model y = A + B X
Intercept: | A = Z’;;ZZ;Z__Z(;E); Y oy =0y % szzfz(zx)z (Prob (8.16)
Slope B = N}?gf&i’gy o = 0, NZxZIX(Zx)Z
where o, = |——¥[y; — (4 + Bx)]’
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Correlation Coefficient

Combining the Schwartz

inequality |':r-r:}’| = B Ty
. N
With the definition of the ooy = _Z(I" _ Dy, —5) =50
covariance N =
:_
ity i - aq\* ag\* dq d
The uncertainty in afunction 2 _ (_QJ 5 21 (_fi') 5 247 (_fi'_fF)a_
q(x.y) is 1 dx) ¥ ay) ¥ dx dy/ =¥
B g 99
With a limiting value Tg = Ax Tyt E v
At last, the upper bound _ dq dq
of errors is Og = Jx Ox T % Ty
And for independent and 2 2
random variables O—q:J(%‘.O—XJ +(a_q.o-y]

UtahState Intermediate 3870
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UtahState

Question 2: Is it Linear?

54 5L 3
t ol |
g §
= L = L T
y(X) =A+B X (]
_ T [}
0 - 5613' — mm 0 500 1,000
(b) . (e
Coefficient of Linear Regression: r = 2GDGy] %

= EGDIZ03)2 o0y

Consider the limiting cases for:
* r=0 (no correlation) [for any X, the sum over y-Y yields zero]
» r=x1 (perfect correlation). [Substitute yi-Y=B(xi-X) to get r=B/|B|=%1]

Intermediate 3870
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...
Table (i 'I;Ihe perg.]entage probabﬂllty ProbN(LrA ro) that N measurements of two
ted v, = .
£§°f°(%mi’iimiitfﬁfoiﬁ&fﬁé“f?éﬁfm°o‘°3’§=}2"‘h 17 o s & ncion ot N Tabulated Correlation
‘ <:| r value - .
— Coefficient

0 01 02 0.3 0.4 0.5 0.7 0.9

[

3 100 94 87 81 74 67 59 51 41 29 0 . . e
No?ritsa 4 100 9% 3 70 6 |50 | 4 30 20 10 o0 Consider the limiting cases for:
5 100 8 75 62 50 |39 | 28 19 10 : .
P 0 » =0 (no correlation)
6 100 85 70 56 43 31 21 12 5.6 1.4 1] .
7 100 8 6 51 37 [25 | 15 80 31 06 0 » r=x1 (perfect correlation).
8 100 8 6 47 3 |2 | 12 55 17 02 0
9 100 80 61 43 29 17 8.8 3.6 1.0 0.1 0
00078 s 405 14| 67 24 05 0 To gauge the confidence imparted
11 100 77 56 37 . . . 8 i
o S G R I S . by intermediate r values consult the
13100 75 51 32 18 82| 30 08 01 0 ' '
14 100 73 49 30 16 | 69| 23 05 01 0 table in Appendix C.
15 100 72 47 28 - 14 58| 18 04 0
6 2 : 4 03 -
}7 133 ;3 :Z 22 if :i ij 33 The values in Table C were calculated from the mtegral
18 100 69 43 23 10 35/ 08 01
19 100 , 68 41 21 90 | 29| 07 01 ' 2F[(N 1)/2] 1 rz (N 92 gy
20 100 67 40 20 81 | 25| 05 01 - - P Obﬁ(lf' | = Ir oD '\/_I' W = 2)2] Il )
. N B . - Q
25 100 . 63 34 15 4.8 11 0.2 s T [ .
30 100 60 29 1 29 | 05 ' ' : -
35 100 57 25 80 17 | 02 See, for exampl‘e, E. M. _Pugh and G. H. Winslow, The Analysis of Physical Mea-
40 100 54 2 6.0 11 | o1 _ surements (AddlSO]l-_WES].ﬂY,-.1966), Section 12-8. .
45 100 51 19 45 06 | 0

0 005 01 015 02 lo2s| 03 o3 o4 om Probab|_l|ty that a_m_aly5|s of N:7_0 data points with a
: correlation coefficient of r=0.5 is not modeled well by a

500 100 73 49 30 16 | 80| 34 1-3% linear relationship is 3.7%.
60 100 0 43 23 13 5.4 20 0.5

— : 7 | Therefore, it is very probably that y is linearly related to x.
70 100 6 41 2 97 (3712 03 o1 b
80 100 - 66 38 18 75 | 25| 07 01

Proby(|r|>r,)<32% =» it is probably that y is linearly related to x
Proby(|r|>r,)<5% => it is very probably that y is linearly related to x
Proby(|r|>r,)<1% =» it is highly probably that y is linearly related to x

9 100 64 35 16 59 1.7 0.4 0.1
100 100 62 32 14 4.6 1.2 0.2
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Uncertainties in Slope and Intercept

Taylor:
For the linear model y = A + B X
. _ Zx?%y-Yx Txy _ 3 x2
Intercept: A= V-G r)? 04 = Oy y5 v a)? (Prob (8.16)
_ NYxy—-Xx Xxy _ N
Slope B= N Y x2—(Zx)? %B = Iy Nza2-@ o2

where o, = \/ﬁZ[yi — (A + Bx)]’

Relation to R2 value:

o5 = B Jﬁ[wﬂﬂ _1]
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Intermediate Lab
PHYS 3870

Comparing Measurements to Models
Non-Linear Regression
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Motivating Regression Analysis

Question: Consider now what happens to the output of a nearly
Ideal experiment, if we vary how hard we poke the system (vary
the input).

Uncertainties in Observations

Input N Output

[ E— [—)>

The Universe

A more general model of response is a nonlinear response model
y(x) = 1(x)
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Questions for Regression Analysis

A more general model of response is a nonlinear response model
y(x) = f(x)

Two principle questions:

What are the best values of a set of fitting parameters,

What confidence can we place in how well the general model fits the data?

The solutions is familiar:
Evoke the Principle of Maximum Likelihood,

Minimize the summation of the exponent arguments, that is chi squared?

Recall what this looked like for a model with a constant value, linear model,
polynomial model, and now a general nonlinear model

[v; —¥] = [v; — (A + Bx)] = [y; — (A + Bx; + Cx; 9] = |y, _.ffit(j':i}]
N N N N 2
N YR [y; — (A + Bx;)J? [y; — (A + Bx; + Cx;9))? [y - ff:’t(xi)]

7
¥ Ty
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Chi Squared Analysis for Least Squares Fit

General definition for Chi squared (square of the normalized deviations)

V2 = E (ﬂhaewe-d value — expected valuﬂ) (12.11)

1 standard deviation

Perfect model ¥r:—=0

Good model YIS N
Poor model ¥yim N

Discrete distribution

Oy — £ (12.4)

VE,

Z [D.I: . ‘i-:".ﬂ;:"Z (12.5)
k=1 ﬁ.‘
Continuous distribution

2 = % {}r,- - ffx.-})ﬁ
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Expected Values for Chi Squared Analysis

(12.11)

B i (ﬂhﬁﬂﬁﬁd value — expected valuf:)
1 standard deviation

or

= i (}r.- - ffx,-})?h

] o

If the model is “good”, each term in the sum is ~1, so
N

N2 Z i =N
i=1
More correctly the sum goes to the number of degrees of freedom, d=N-c.

The reduced Chi-squared value is
M

- 1 1 , N So X..4=0 for perfect fit
Kred = a:‘iz ~ EZ ! *E &1 Xieq°<1 for “good” fit
=1 X.eq>>1 for “poor” fit

(looks a lot like r for linear fits doesn’t it?)

UtahState IEECEESE NON-LINEAR REGRESSION Lecture 6 Slide 33

UNIVERSITY Fall 2011



Chi Squared Analysis for Least Squares Fit

Table 12.3. The expected numbers E; and the observed numbers O,
for the 40 measurements of Table 12.1, with bins chosen as in Table

12.2,
Bin number Probability Expected number Observed number |
k Proby E. = NProb, O
1 16% 6.4 8
2 34% 13.6 10
3 34% 13.6 16
4 16% 6.4 6

Table 12.4. The data of Table 12.1, shown here with the differences

Gj‘. - Et'

Bin number Observed number Expected number Difference
k O, E, = NProb, 0, — E,
1 8 6.4 1.6
2 10 13.6 —36
3 16 13.6 2.4
4 & 6.4 —0.4

J

- i (O — Eﬂ

k=1 El: .

(L6  (—3.6)° (24P  (—04)
64 © 136 136 © 64
1.80.

From the probability
table ~99.5% (highly
significant)
confidence
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Probabilities for Chi Squared

The values in Table D were calculated from the integral

Proby (72 = %) = 2“1“(;;![2‘) J d-1g=x%2 gy

See, for example, E. M. Pugh and G. H. Winslow, The Analysis of Physical Mea-
surements (Addison-Wesley, 1966), Section 12-5.

Appendix D: Probabilities for Chi Squared
Table D. The percentage probability Prob,(¥ > = ¥,°) of obtaining a value of

¥ 2= ¥,2 in an experiment with d degrees of freedom, as a function of d and ¥ X2
(Blanks indicate probabilities less than 0.05%.)

T2
Xo

d 0 05 10 15 20 25 30 35 40 45 50 55 60 80 100

100 48 32 22 16 11 83 61 46 34 25 19 14 05 02
100 61 37 22 14 82 50 30 18 11 07 04 02

100 68 39 21 11 58 29 15 07 04 02 01

100 74 41 20 92 40 17 07 03 01 01

100 78 42 19 75 29 10 04 01

Lh = L) 2 =

0 02 04 06 08 10 12 14 16 1.8 20 22 24 26 28 30

1 100 65 53 44 37 32 27 24 21 18 16 14 12 11 94 83
- o ~— - == Az 27 2an 9 2 20 17 14 11 91 7.4 6-1 5.0
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Reduced Chi Squared Analysis
L, 1S (0 EY
T EE:I Ej

Table 12.6. The percentage probability Prob,(¥% = ¥ %) of obtaining a value of

¥ greater than or equal to any particular value ¥ %, assuming the measurements

concerned are governed by the expected distribution. Blanks indicate probabilities
less than 0.05%. For a more complete table, see Appendix D.

—
z
Xe
e et e e ot e B e e R —

i O 025 05 075 10 125 15 175 2 3 4 5 6

1 100 62 48 39 32 26 22 19 16 B 5 3 1

2 100 78 61 47 37 I 22 17 14 5 2 0.7 02

3 100 Be 68 52 3% 2% 21 15 11 3 0.7 02

5 100 o4 TR 59 42 2B 1% 12 5 1 01 — ==
10 100 99 B9 68 44 25 13 6 3 6 - - =
15 100 100 94 73 45 23 10 4 1 —_ = -

d and ¥,2. For example, with 10 degrees of freedom (d = 10), we see that the
probability of obtaining ¥ = 2 is 3%,

Prob,(7*=2) = 3%.
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Problem 12.2

12.2. %% Problem 4.13 reported 30 measurements of a time # with mean 7 = 8.15
sec and standard deviation o, = 0.04 sec. Group the values of ¢ into four bins with
boundaries at 7 — o, , and  + o,, and count the observed number O, in each bin
k=1, 2,3, 4. Assuming the measurements were normally distributed with center at
7 and width o, find the expected number £ in each bin. Calculate x2. Is there any
reason to doubt the measurements are normally distributed?

..........................................................

surements of a ume t (in seconds)

: 3.16, 8.14, 8.12, 8.16, 8.18; 8.10, 8.18; 8.18, 8.18, 8.24,
DT 8.16,.8.14, 8.17, 8.18, 8.21; 8.12, 8.12; 8.17, 8.06; .8.10,
8.12, 8.10, 8.14; 8.09, 8.16; 8.16, 8.21; 8.14, 8.16; 8.13.

(You should certainly use the built-in functions on your calculator (or the spread-
sheet you created in Problem 4.8 if you did), and you can save some button pushing
if you drop all the leading 8s and shift: the decimal point two places to the right
before doing any calculation. ) (b) We know that after several measurements, we can
EXPECI about 68% of the Dbsarved values to be within o, of 7 (that is, inside the
range i = ¢,). For the measurements of part (a), about how many: would you expect
to lie outside the range ¢ *:0,? How many do? (c) In Chapter 5, I will show that
we can also expect about 95% of the values to be within 20, of 7 (that is, inside the
range t = 20). For the measurﬂments of part (a), about how many would yﬂu ex-

pect to lic outside the range 7 + 20,? How many do‘? - _
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Problem 12.2

Lz = mean(t) Ly = 81485
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78033 The distribution appears to be a little bit asymmetrical.
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