Intermediate Lab
PHYS 3870

Lecture 3

Distribution Functions

References: Taylor Ch. 5 (and Chs. 10 and 11 for Reference)
Taylor Ch. 6and 7

Also refer to “Glossary of Important Terms in Error Analysis”
“Probability Cheat Sheet”
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Practical Methods to Calculate Mean and St. Deviation

We need to develop a good way to tally, display, and think about
a collection of repeated measurements of the same quantity.

Here is where we are headed.:

« Develop the notion of a probability distribution function, a distribution to
describe the probable outcomes of a measurement

» Define what a distribution function is, and its properties

* Look at the properties of the most common distribution function, the Gaussian
distribution for purely random events

* Introduce other probability distribution functions

We will develop the mathematical basis for:

* Mean

« Standard deviation

« Standard deviation of the mean (SDOM)

« Moments and expectation values

» Error propagation formulas

« Addition of errors in quadrature (for independent and random measurements)
« Schwartz inequality (i.e., the uncertainty principle) (next lecture)
* Numerical values for confidence limits (t-test)

* Principle of maximal likelihood

* Central limit theorem

Intermediate 3870
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Two Practical Exercises in Probabllities

Flip Beemy $®0 e araoh decmar thid easasitists

Grab a partner and a
set of instructions
and complete the
exercise.
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Two Practical Exercises in Probabllities

Flip a penny 50 times and record the results

Group Two Instructions \(Group One Instructions

1. Flip penny 50 times 1. Flip penny 50 times

2. Record each results as “H” or “T” in list below 2 Tally results on list below
Heads:
Tails:

What is the asymmetry of the results?
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Two Practical Exercises in Probabllities

Flip a penny 50 times and record the results

Group Two Instructions Group One Instructions
1. Roll two dice 50 times 1. Flip penny 50 times
2. Record each results as “H” or “T” n list below 2. Tally results on list below

H H H T T H H T H H Heads: M W W W (| 540,
H H T T H H T H T H
T T U T T T ®wT T Tails: MMWW”/ 46%

??7% asymmetry 4% asymmetry

What is the asymmetry of the results?
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Two Practical Exercises in Probabllities

Roll a pair of dice 50 times and record the results

Group One Instructions Group Two Instructions
Roll two dice 50 times Roll two dice 50 times
Record results on table below, checking Record each result in list below

one box for each die

What is the mean value?
The standard deviation?
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Two Practical Exercises in Probabllities

Roll a pair of dice 50 times and record the results

Group Two Instructions Group One Instructions
Roll two dice 50 times Roll two dice 50 times
Record each result in list below Record results on table below, checking one box for each die

6 6 9 7 11 12 6 11 6 _

1

_7_

7 7 & 4 11 10 12 11 7 4
7

What is the mean value?

The standard deviation?

What is the asymmetry

(kurtosis)? 203 ]4|5|6|7|8|9]|10]11]12
. A Mean =7.3

What is the probability of St. Dev. = 2.8

rolling a 47
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Discrete Distribution Functions

A data set to play with Written in terms of “occurrence” F
26, 24, 26, 28, 23, 24, 25, 24, 246, 25. {3.1) E
k
23, 24, 24, 24, 25, 25, 26, 26, 26, 28 (3.2) 0.3
0.z

0.1 I

0
2 23 24 a5 26 27 23
Table 5.1. Measureo IeNguos £ a0 LHSu M s v ws s s

Different valuss, x, 23 24 25 26 27 28
Number of times found, n, 1 3 2 3 o 1

In terms of fractional expectations

The mean value

. . e
i Zi]ra B Fractional expectations Fo=o
. X = = .
N 10
This equation is the same as Normalization condition 1=3"(F,
e B4 (AXPF (25X +...+28 k
T 10
i Mean value X= ) By
or in general Sl Y (men) g{ k 71]
k k
=N K= =
g{“‘*) > N > () (This is just a weighted sum.)
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Limit of Discrete Distribution Functions

Binned data sets

03
0.2 Table 5.2. The 10 measurements (5.9) grouped in bins.
0.1 i Bin 2210 23 o4 41025 2wl 26 to 27 27 to 28
. I L' l Obszervations
o 23 4 25 % 27 g in bin 1 3 _ 1 4 1 0
26.4, 23.9, 251, 245, 22.7, 23.8, 25.1, 23.9, 25.3, 25.4. (5.9

“Normalizing” data sets f,&; = fraction of measurements in kth bin.

f, = fractional occurrence
Ay = bin width

Mean value: %= sz Xk = Z(fk Ar)x
K k

e i (fie By )Xk
Normalization: S Ay

F,
Expected value: Prob(4) = ﬁ = fa
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Limits of Distribution Functions

Consider the limiting distribution function as N - and A, =20
Larger data sets

fx _ T

T
04 N=10 041 _\_ N=100 0al ’ N=1,000
| . — _‘ 03 F 0a -
0.2
0.1 - 02
E_j - Jl I ] I x 0.1
26 27 28 ¢ 22 13 24 25 26 7 28 o e
— ] R _ 22 23 . 25 26 27 18
S Bin size A Figure 5.3. Histogram for 100 measurements of the same quantity as in F;gu:e LA
Frequency Distribution
| b | #DataPts: N=6000 \Mathcad Games:
' Mean: =10
01F - - H

5td. Dev.: o= 5

-

: T 0063

g — =10

= SDOM:

g N

= 005 -
Fractional
Error:
1
0 T~ 0645%
20 YN B
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Continuous Distribution Functions

Meaning of Distribution Interval #(x)
flx) dx = fraction of measurements that {\ high precision
fall between x and x + dx. . (5.10)
() i .
/N ' T
x  x+dx = b g
Th us . la) )] : - ;ﬁ &"H‘ lew precision
hf M fraction of measurements o o _
(x)dx bt fall within a<x<b Normalization of Distribution
+ o3
3 - ) fix)dx=1 Z{Fk}=l > j flxldx=1
and by extensior (x) dx = m e
— g
Central (mean) Value Width of Distribution
2 2
Y (Fn)=x D pN[CEEEACE
ko k
oo o
j x flx)dx = % = {x) (5.15) f (x —2)2 flx)dx = ax? = {(x —%)%) (5.16)
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Moments of Distribution Functions

The first moment for a probability distribution function is

X = (x) = first moment = f_+:x f(x)dx

For a general distribution function,

-+ o0
d
(x) = first moment = f—:wx g(x)dx

J o g()dx

X

Generalizing, the n™ moment is
J2o X" g(x)dx

= ny — = = T en
x, = (x") = nth moment o Jx™ ) dx
O (for a centered distribution)
O™ moment =N 2" moment = ((x 7’3?)2) — (x?)

1% moment = x 3" moment = kurtosis
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Moments of Distribution Functions

Generalizing, the " moment is
[ X" g(x)dx
2% g(x)dx

0
O™ moment =N 2" moment = {(x —,a?{z' ) = (x 2)

1% moment = X 3" moment = kurtosis

x, = (x") = nth moment = = f_+: x™ £(x) dx

The ™ moment about the mean is

U, = ((x —x)") = nth moment about the mean

[13 G—0)" g@)dx _

e n
1 g)dx f (x — X)" f(x) dx

The standard deviation (or second moment about the mean) is

02 = u, = ((x — %¥)?) = 2nd moment about the mean

B f_+;’,° (x—9)? g(x)dx
Y gdx

=[x — %)? f(x) dx
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Example of Continuous Distribution Functions and Expectation Values

Harmonic Oscillator: Example from Mechanics

g,ow.{nf‘/('/ q Mass on g

5/7'/.1\7 tvl/‘ (wpomry @ L

quc/ evw/’:é:wq /Jo:( /'0‘4 %

o %~

T{ﬂ’ e‘e/uq/wus 3 7(5) = fq s ot T 75
km/mn are 4 ﬂ"[_é): ‘/qwco;af[f

7'{[{) = = /qwz,fm ot

>

The expectation value of a function R(X) is

Expected Values

[T R(x) g (x)dx
[T g(dx

= [""R(X) f(x) dx

(REx)) =

Intermediate 3870
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Example of Continuous Distribution Functions and Expectation Values

Boltzmann Distribution: Example from Kinetic Theory

Expected Values =»

The expectation value of a function

RO Is The Boltzmann distribution function for velocities of particles as
+oo a function of temperature, T is:
_ [, R&)g(x)dx :
(R(X)) == f::o 5 (0 dx .,
+00 M lM 2
= [ R(X) f(x) dx P(v;T) = 4n ( ) v2exp|2 v 1
21T kBT 4 k T
2 B
Then

oo 1/2
(V) = f_oo vP(w)dv = [8 kBT/n Ml

+oo 1/2
W\E Area=Pdv <V2) = f_oo v P(v) dv = [3 kBT/M]

implies (KE) = 1M(v?*) = %kBT

N
o
|

b
o
[

POy (0 Ya/my)
I

Up

I l q<dv
0 3 S | | | | L v
0 200 400 600 800 1000 1200

Speed (m/s 1/2
— Vpeak:\/[2 kBT/ M] = [2/3

1/2
(V%)

UtahState Intermediate 3870
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Example of Continuous Distribution Functions and Expectation Values

Fermi-Dirac Distribution: Example from Kinetic Theory

For a system of identical fermions, the average number of fermions in a single-particle state ¢, is given
by the Fermi—Dirac (F-D) distribution,

1
elei—p)/kT 1 1
where kg is Boltzmann's constant, T is the absolute temperature, €i is the energy of the single-particle
state %, and x is the total chemical potential.

?_13':

Since the F-D distribution was derived using the Pauli exclusion principle, which allows at most one
electron to occupy each possible state, a result is that 0 < 7; <1

When a quasi-continuum of energies e has an associated density of states Q(E) (i.e. the number of
states per unit energy range per unit volume) the average number of fermions per unit eneray ranae
per unit volume is, ' : : ' '

N(e) = g(e) F(e)

where F(€) is called the Fermi function

n

1
Fle) = = 1
so that, : , ]
4l g DU I
Ne) = ele—p)/ET 4 1 © * 2 /s 3 4 =

Intermediate 3870
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Example of Continuous Distribution Functions and Expectation Values
Finite Square Well: Example from Quantum Mechanics

[52 W ()0 ()W (x)dx

Expectation Values The expectation value of a QM operator O(x) is {0(X)) = =2
[, YrOY(x)dx

For a finite square well of width L, ¥, (x) = / /L sin ln . X]

[P (0000) ¥, (x)dx _
77 W, (0w, (%) dx

(" (0 |¥n (%)) =

f Y (x)x W, (x)dx
77 W (0 W, (%) dx

(x) = (¥ O x|Pr () = =L/2
[, () ‘P(x)dx

(p) = (¥, (X)I——ILIJ ) = = (x)tP 0 d

f+ool'p ( )lh l'IJ (X)dx nzn'zhz
[ (an x)dx  2mlL?

(En) = (¥ (x)|1h [ Pn () =

Intermediate 3870
UNIVERSITY Fall 2013
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Summary of Distribution Functions

Probabilit )cli:m (Discrete Case)
The ranaom variable X will be called a discrete random variable if there exists a func-
tion f such that f(z;) > 0 and 21’(2:) =1fori=1,2, 3, ...andsuch that for any

event E,

P(E) = PX isin E] = ) f(z)
B

where 2 means sum f(z) over those values z; that are in £ and where f(z) = P[X = z].

H
The probability that the value of X is some real number z, is given by f(z) = P[X = 1],
where f is called the probability function of the random variable X.

Cumulative Distribution Function (Discrele Case)
The probability that the value of a random variable X is less than or equal to some
real number z is defined as
F(z) = P(X < 2)
= Zf(z)),

where the summation extends over those values of ¢ such that z; < z.

-0 <z< ™,

Probabilily Denasily (Continuous Case)

The random variable X will be called a continuous random variable if there exists &
function f such that f(z) > 0 and /_’_ f(z) dz = 1 forall zininterval —» <z < @ and
such that for any event E

P(E) = P(Xisin E) = [ /() dz.
f(z) is called the probability density of the random variable X. The probability that X

assumes any given value of z is equal to zero and the probability that it assumes a value
on the interval from a to b, including or excluding either end point, is equal to

[ 1@ az.

Cumulative Distribution Function (Conti Caase)
The probability that the value of a random variable X is less than or equal to some
real number z is defined as
F(z) = PX < 2),
= [ 1) d=.

- <z< ®

From the cumulative distribution, the density, if it exists, can be found from
dF
e = 452 .

From the cumulative distribution

P@<X<b=PX<Lb) -PX<a)
= F(b) — F(a)

Intermediate 3870
Fall 2013

UtahState

UNIVERSITY

DISTRIBUTION FUNCTIONS

Mathemalical Ezpectation )

A. Expecrep VaLur

Let X be a random variable with density f(z). Then the expected value of X, E(X),
is defined to be

EX) = ) zf(z) .
2 Available

on web site

if X is discrete and
EX) = [°, of(z) dz

if X is continuous. The expected value of a function g of a random variable X is defined as

Efg()] = ), (@) - S(2)

if X is discrete and

Elge0] = [, o(2) - () dz
if X is continuous.
Theorems

1. E[aX + bY] = aE(X) + bE(Y)
2. E[X Y] = E(X) - E(Y) if X and Y are statistically independent.

B. MomEeNTs

a. Moments About the Origin. The moments about the origin of & probability distri-
bution are the expected values of the random variable which has the given distribution.
The rth moment of X, usually denoted by ' is defined as

Wem BIXY) = ) 2f(z)

we= BX) =[O 2y(@) dz

if X is discrete and

if X is continuous.

The first moment, u';, is called the mean of the random variable X and is usually
denoted by u.

b. Moments About the Mean. The rth moment about the mean, usually denoted by
e, i8 defined as

wo = E[(X = wY] =), (& = 0)f(2)
if X is discrete and
b= B(X — wy) = [° @@~ @) dz

if X is continuous.
The second moment about the mean, uj, is given by

pr = E[(X — p)t] =p'2— #?

and is called the variance of the random variable X, and is denoted by ¢*. The square root
of the variance, o, is called the standard deviation.

Theorems
1. o'x = clo’x

2. olyx =o'
3. U’.x+g = a'o’x

Lecture 3 Slide 19




Intermediate Lab
PHYS 3870

The Gaussian Distribution
Function

References: Taylor Ch. 5
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Gaussian Integrals

Factorial Approximations

nl ~ (2mn)Y/? n" exp [—" + 50 (%)]

1 1 1
log(n!) = %log(Zn) + (n + E) log(n) —n + oot 0 (n—z)
log(n!) = nlog(n) —n (for all terms decreasing faster than linearly with n)

Gaussian Integrals

L, =2 fooo x™ expif—x?) dx ; m>-1

I, =2 fooo y™ expif—y) dy =T(n+ 1) x2=y, 2dx=yY?dy, n=l(m-1)
h=T(n=3)=vr  ;m=0, n=-!

i =T(k+3)=(k=1)(k=3/)..C/)(/)vm  ievenm m=2k>0, n=k—1
Ly =Tk+1)=k! ;oddm m=2k+1>0, n=k>0
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Gaussian Distribution Function

Independent T 1
Variable Center of Distribution

Distribution (mean)
Function

F
H
[ Tt
-
=

Gy lx) = g~ XPRE

\

Normalization Width of Distribution
Constant (standard deviation)

orlarge . o small

e —
f=]

7
15 F Gaussian Distribution Function
'_,._--'X=2,|:I'-ﬂl'5
1.0
0.5 '__-'J.r""'x-"'l['fﬂ'=j.
i - ‘.l- p -:-.'-H"'-h_ 1 .
0 1 2 3 4 5 & 7

Figure 5.10. Two normal, or Gauss, distributions.
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Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N =« and dx->0

Frequency Distnbution
I I-L l # Data Pts: N = 6000
Mean: = 10
0.1f : - H
N 5td. Dev.: o =3
Eﬁl \
i
= & — = 0045
= SDOM:
g N
= 005 -
Fractional
Error:
1
0 I T 0645%
10 20 N 1
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Defining the Gaussian Measure Data:

distribution function Normal Distribution Parameters: Mean:
in Mathcad Standard Deviation:

Number of "Measurements":

"Measurements": = morm({N, L, a)

Histogram Calculations: |syggest you “investigate”
these with the Mathcad sheet

R on the web site
Number of M = floo\ N>~ ) + 2 M = 4.000 m=0.(M)
intervals: )
Interval spacing: Ax = [c“](m("]} - ﬂ“‘”(mm{"n] Ax= 2500
M
Calculate Intervals: Int = floor(min(x)) + m-Ax
m
Calculate F = hist(Int, x)
AR,

Frequencies:

Gaussian Distribution Function:

function: 2

2
Define distribution  Norm(A. |1, 0.x) ‘= — —— exp|
o 2-T 2

Maximum of

distribution function: - vmax = Norm(l, . @ 1) N = 0.080

UtahState ISECEESE DISTRIBUTION FUNCTIONS Lecture 3 Slide 24
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Alternative Distribution Function:

Distribution

function: Normal Distribution Parameters: "Measurements": Frequencies : ]
o _ _ Using Mathcad to
Binomial p=.68 vi=15 X, = rbinom(N, v.p) F,= hlsi[l.nt,xb) d f th
erine other commaon
Poisson A= 10 X, = pois(N, ) F, = hist(Int, x,) distribution functions
Cauchy 1=n =0 X = rcauchy(N,1,s) F.= ]Jist(lnt,xn]
Chi-squared d=N-4 X, = 1pois(N. X) F, = hist(l.tlt,x.x) ConSIder the Ilmltlng
Cauchy Distribution Chi-squared Distribution distribution function
0.4} | :‘“— 0.2 | ,h— as N -»d and Ak—)O
: ?':"T'-
03 /? _ /"‘ |
§ : g :
g o2 / P g oar 'H
o |
o ! I 0 ! I
0 5 10 1] 5 10
X X Binomial Distribution Poisson Distribution
0.6 | .LL T 0.6 | |Ll 7
-l"'"':“'h- -l""':""-
Q 0.4 i N g‘ 0.4 i m
£ | f |
02r i . 02 i .
0 ! I 0 1 I
0 5 10 0 5 10
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Gaussian Distribution Moments

Consider the Gaussian distribution function  Gg_(x) = > expl(x — )E’]E;ZJE]
OV AT0

L) Lo ]
Use the normalization condition to 1= f Gy (x) dx = f Nexp[—(x — X)?/20%] dx
evaluate the normalization constant —oo e
=x—X,dy=dx
SRVl 1 i demie f NEIP[—}’E/ZJE] dx
o —0
=y /o,dz=
1 =l f Nexp[—z2/2] dz = No\2r
—i0
N =1/(oV2m)
The mean, X, is the first moment o _
of the Gaussian distribution {I} = X Gfﬂ-'[x] dx =X
function (see Taylor, p. 134) —c0

The standard deviation, o,, is the standard o _
deviation of the mean of the Gaussian g, = f (x —X) %Gg,(x) dx = a*
distribution function (see Taylor, p. 143) —o0
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When is mean x not X, .2

Cauchy Distribution

|_L | |
004 ! —
Answer: When the

0.03[ I - distribution is not
7y symmetric about X.
=
= | _ _
g e Example: Cauchy
. Distribution
001 \ .
||||
||||I!|!!!.!“|||||III||||||

0 10 20 30
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My T

When is mean x not X, .2

Maxwell speed distribution law is

P(v)=4n

_M
2aRT

32

02 e—Mtﬂ/ZRT.

There are three candidates for what is called the "average" value of the speed of the Maxwell speed
distribution.

Firstly, by finding the maximum of the M3D (by differentiating, setting the derivative equal to zero and
salving for the speed), we can determine the most probable speed. Calling this Vimp, We find that:

2T\ /2
’L-‘mp = ? .

Second, we can find the mean value of v from the MSD. Calling this ¢

UtahState

UNIVERSITY

600 800

Speed (m/s)

Intermediate 3870
Fall 2013

DISTRIBUTION FUNCTIONS

8ET\ 2
f= (_) |
wn

Third and finally, we can find the root mean square of the speed by finding the expected value of 12,
(Alternatively, and much simpler, we can solve it by using the equipartition theorem.) Calling this vims:

3T\ 2
Urms = ( ) .
m

Notice that Ump < ¥ < Upms-

These are three different ways of defining the average velocity, and they are not numerically the same.
It is important to be clear about which guantity is being used.

Lecture 3 Slide 28




I ———
When is mean x not X, .2

Frequency Distnbution
| | I.L | |
: Answer: When the
0.041 - distribution is has
5 more than one peak.
5
=
=
e
0.02[ =
“\Hw
'} ] .|I|”"|I|...
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Intermediate Lab
PHYS 3870

The Gaussian Distribution
Function and Its Relation to
Errors

DISTRIBUTION FUNCTIONS Lecture 3 Slide 30

UNIVERSITY



|
A Review of Probabilities in Combination

1 head AND 1 Four OR 1 Four
P(H,4) = P(H) * P(4) P(6,4) = P(6) + P(4)

(true for a “mutually exclusive” single role)

1 head OR 1 Four NOT 1 Six
P(H,4) = P(H) + P(4) - P(H and 4) P(NOT 6) = 1 - P(6)

(true for a “non-mutually exclusive” events)

Probability of a data set of N like measurements, (X{,X5,...Xy)

P (X1, X5y-..Xp) = P(X)*P(X,)*...P(Xy)

Intermediate 3870
UNIVERSITY Fall 2013
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The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random

variables to develop the mathematical basis for:

 Mean

Standard deviation

Standard deviation of the mean (SDOM)

Moments and expectation values

Error propagation formulas

« Addition of errors in quadrature (for independent and random
measurements)

 Numerical values for confidence limits (t-test)

Principle of maximal likelihood

Central limit theorem

Weighted distributions and Chi squared

Schwartz inequality (i.e., the uncertainty principle) (next lecture)

Intermediate 3870
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Gaussian Distribution Moments

Consider the Gaussian distribution function  Gg_(x) = > expl(x — )E’]E;ZJE]
OV AT0

L) Lo ]
Use the normalization condition to 1= f Gy (x) dx = f Nexp[—(x — X)?/20%] dx
evaluate the normalization constant —oo e
=x—X,dy=dx
SRVl 1 i demie f NEIP[—}’E/ZJE] dx
o —0
=y /o,dz=
1 =l f Nexp[—z2/2] dz = No\2r
—i0
N =1/(oV2m)
The mean, X, is the first moment o _
of the Gaussian distribution {I} = X Gfﬂ-'[x] dx =X
function (see Taylor, p. 134) —c0

The standard deviation, o,, is the standard o _
deviation of the mean of the Gaussian g, = f (x —X) %Gg,(x) dx = a*
distribution function (see Taylor, p. 143) —o0
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Standard Deviation of Gaussian Distribution

X+e
Prob(within o) = L_E G, o) dx (5.32)
See Sec. 10.6: Testing of
— _1__ J‘ITFE-{#-M . {533} Hypotheses
ﬁ - | . 5 ppm or ~50 “Valid for HEP=

1% or.~30 “High_ly Significant”

G;l.:r(x} 13 33
4’, : 5% or ~20 “Significan
1o “Within errors”;
T, N0 SRR NN A 997% 29.99%
H osa% | |
5 - 1 1 I
T r l I Il | ]
k= | 68%: i i Il
5 ool | : ! :
§ I
VSR
Area under curve | I: ! ! !
(probability that 0 ',T " ' é : 3' — i -t
—0<x<+0)is 68% 0.674

significant!

t ’0 025 05 075 L0 135 15 175 20 25 30 35 40
Prob (%) l 0O 20 38 55 68 79 8 092 954 088 997 99.95 99.99

Figure s_.l 3. The probability Prob(within te) that a measurement of x will fall within ¢ stan-
dard deviztions of the true value x = X Two common names for this function are the normal er-
ror integral and the error function, erf(t).

More complete Table in App. Aand B
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Error Function of Gaussian Distribution

Error Function: (probability that —to<x<+to ). Complementary Error Function:
(probability that —x<-to AND x>+to ).

Prob(x outside to) = 1 - Prob(x within to)

1 r
Probiwithia 10) = —= | e dz (5.35)
o o) Af2m A Probable Error: (probability that

—0.670<x<+0.670) is 50%.

Error Function: Tabulated values-see App. A.

100% |- — oo eee A 27% 29.90%
i | 95.4% l |
| 1 ] !
T [ | 1 ]
A ) | I 1
B 68% l | f
= I i ] 1
E S0%pb-——e- { ! ! |
- E 1 1 I 1 |
— | i 1 1 |
i I [ I i
"% i ,|. 1 | 1
= b | l !
| | I ] ]
| I 1 | [
I ] ] 1 ] I I
A ; 0 i 2 3 4
rea under curve . 0.674

(probability that
—to<x<+to) is given

nETableiat right. t ‘u 025 05 075 1.0 125 15 175 20 15 30 35 440

> Prob (%) [T 200 38 S5 68 79 8 92 054 988 99.7 99.95 99.99

Figure 5." 3. The probability Prob(within ta} that a measurement of x will fall within ¢ stan-
dard deviations of the true value x = X. Two common names for this function are the normal er-
ror integral and the error function, erf(z).

More complete Table in App. Aand B
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Useful Points on Gaussian Distribution

Full Width at Half Maximum Points of Inflection
FWHM Occur at *o
(See Prob. 5.12) (See Prob. 5.13)

FWHM = 2e42In2 = 2350,

o

+ fnas

Figure 5.20. The points X % ¢ are the points of inflection of
the Gauss curve; for Problem 3.13.
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Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

g =x+A (4 g = Bx,

width o
width o, . L /k
AS : x

X » x (measured) X
i ‘{/ width Bﬂ:f
< [ | /\_‘
®) ‘ /\ . -
: JII+A g=x+A (calculated)
5 o
Gy dx) = ek~ X)p2a?
Gy dx) = D e e AP o\
T . _ }
. 22 (probability of obtaining value g) = (probability of obtaining x = g/B)
(probability of obtaining value g) = e {a—4=% [_. 4 _ oV _2]
= g la—E+a)P2od (5.49) o exp (B I) 20y
= exp[—(g — BX)/2B’a,%). (5.50
X2>X+A X->BX and 02>B o
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Error Propagation: Addition

Sum of Two Variables

width e, /ﬁmq’
Consider the derived quantity A
x - ¥

Z=X+Y . .
X Y

(with X=0 and Y=0)
. (a) (b}
Prob(x) = exp[— (5.51)
—yz - X +¥
Prob(y) = axp(z?i) (5.52) Xy
¥ (©
Error in Z: = . 1/x2 Y
Prob(x,y) = Prob(x) - Prob(x) < exp 2\ 7+
X y

Multiple two probabilities

2
Ve exp[ L(_GHy) z2 ICBST (Eq. 5.53)

2\(ax2+ay2)
1/ (x+y)2
BT

Integrates to V21

X+Y=>Z and 0,2+ 02 0,
(addition in quadrature for random, independent variables!)
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General Formula for Error Propagation

How do we determine the error of a derived quantity Z(X.Y,...) from errors in X.Y,...?

General formula for error propagation see [Taylor, Secs. 3.5 and 3.9]

Uncertainty as a function of one variable [Taylor, Sec. 3.5]

1. Consider a graphical method of estimating error
a) Consider an arbitaray function g(x)
b)Plot g(x) vs. X. '
c) On the graph, label:

(1) Obest = q(Xbest) oo
(2) Oni = q(Xpest T 6x)
(3) Qiow = q(xbest' 0X)

glx)

Gh“r

e o —

d)Making a linear approximation: Grie
Ohi =0pes +SlOpe -X=q +(6_q) :
hi best best aX _ :r |
qlow =qbest —SIOpe '5X=Qbest - (%j ! | x
-Th-t_ﬁx T Im‘l'ﬁ.l.'
e) Therefore: Yo
XN = a_q - X '
ox jl::gu" 3.;{ :.jspl;h:f;;{x} va;ﬂlfx iilmmuailas Xy = Gt then the best estimate for g(x)
Tres = Gl¥pes)e argest smallest e values of gix) values
Note the absolute value. How 2 0F 1. e coespand to the v
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General Formula for Error Propagation

General formula for uncertainty of a function of one variable
5q=\g.5x [Taylor, Eq. 3.23]

Can you now derive for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]

2. Multiplication and Division [Taylor, p. 51]

3. Multiplication by a constant (exact number) [Taylor, p. 54]
4. Exponentiation (powers) [Taylor, p. se
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General Formula for Multiple Variables

Uncertainty of a function of multiple variables [Taylor, Sec. 3.11]

1. It can easily (no, really) be shown that (see Taylor Sec. 3.11) for a
function of several variables

aq

|99 aq
&(x,y,z,...)—‘& P OX + 5‘53/ +15, % * [Taylor, Eq. 3.47]

2. More correctly, it can be shown that (see Taylor Sec. 3.11) for a
function of several variables

oqg oq oq
(X, y,z,...)s‘&‘-& + 5‘53/ + ‘E‘-é‘z + ... [Taylor, Eq. 3.47]

where the equals sign represents an upper bound, as discussed above.

3. For a function of several independent and random variables

rea 2 (o 2 o . 2
Ay 22 50X Pl YY) Tla %) T [Taylor, Eq. 3.48]

Again, the proof is left for Ch. 5.
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Error Propagation: General Case

How do we determine the error of a derived quantity Z(X.Y,...) from errors in X.Y,...?

Consider the arbitrary derived quantity
g(x,y) of two independent random variables x and .

Expand q(x,y) in a Taylor series about the expected values of x and y
(i.e., at points near X and Y).

Fixed, shifts peak of distribution

aCe,y) = q(¥, +(\§' 0+ (5| o-n

Fixed Distribution centered at X with width o

Product of Two Variables

) == 0+ [50), o 5],
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SDOM of Gaussian Distribution

Standard Deviation of the Mean

Each measurement T = s = (T = a. Gy () = g e APk
has similar oy oy 1 An * I‘D( ) ol 4
and similar partial dax ox 1
derivatives — = = = =
Xy iha N

1 2 2 .__..-P""

Thus... 0z = (K,ﬂ'x] + et -'-‘FI) — x
- y%E %
N2 AN

The SDOM decreases as the square root of the number of measurements.

That is, the relative width, o/X, of the distribution gets narrower as more
measurements are made.
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Two Key Theorems from Probability

Central Limit Theorem

For random, independent measurements (each with a well-define
expectation value and well-defined variance), the arithmetic mean
(average) will be approximately normally distributed.

Principle of Maximum Likelihood

Given the N observed measurements, X;, X,,...Xy, the best estimates
for X and o are those values for which the observed x;, X,,...X,, are

most likely.
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Mean of Gaussian Distribution as “Best Estimate”

Principle of Maximum Likelihood

To find the most likely value of the mean (the best estimate of x),
find X that yields the highest probability for the data set.

Consider a data set {X1, X5, X3 ... Xy }

Each randomly distributed with
Prﬂhx,n'{:x:'} = GE,E{:IE} =

j"_E—I:.x[—.H}E.-"EE e o—(xi—X)*/2a
& 27 F
The combined probability for the full data set is the product
Proby (x1,X5 ... x5) = Proby (x1) X Proby (x2) % ... % Proby  (xy)
oC l e_(xl_X)z/zo- X le—(XZ—X)Z/ZO' X ... X l e_(xN_X)Z/ZO- — iNeZ_(xi_X)z/zo-
o o o o

Best Estimate of X is from maximum probability or minimum summation

N
ST Solve for N
Minimize E : Y S Best X
Sum (x; —X)=/o derivative wrst E {x,—X)=0 astimate = fN
=1 Xsetto O =1 of X

Intermediate 3870
UNIVERSITY Fall 2013
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Uncertainty of “Best Estimates’ of Gaussian Distribution
Principle of Maximum Likelihood

To find the most likely value of the standard deviation (the best estimate of
the width of the x distribution), find o, that yields the highest probability for
the data set.

Consider a data set {X1, X5, X3 ... Xy }

The combined probability for the full data set is the product
Proby (x1,X5 ... x5) = Proby (x1) X Proby (x2) % ... % Proby  (xy)

oC le_(xl_X)z/zo- X le—(XZ—X)Z/ZO' X ... X le_(xN_X)Z/ZO- — iNeZ_(xi_X)z/zo-

o) o) o) o

Best Estimate of X is from maximum probability or minimum summation

N
inimi Solve for il
Minimize . e Best X
sum E (x;—X)*/e¢ derivative E (t;—=X) =0 ogtimate Abesr = :er
i=1 wrst Xsetto0 =1 of X

Best Estimate of o is from maximum probability or minimum summation
N Solve for Best

Jllir
1

Minimize Z( 2 derivati See _
x; —X)%/g | derivative astimate  Tneer = |=
! wrst g set to 0 Prob. 5.26 oot '|N._

Sum

i=1 of o
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Intermediate Lab
PHYS 3870

Combining Data Sets
Weighted Averages

References: Taylor Ch. 7
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Weighted Averages

Question: How can we properly combine two or more separate
independent measurements of the same randomly distributed
guantity to determine a best combined value with uncertainty?
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Weighted Averages

Consider two measurements of the same quantity, described by a random Gaussian distribution

<X1>t+ 0y and <Xo> + oy Assume negligible systematic errors.
The probability of measuring two such measurements is

Prob, (xq,x,) = Prob,(x1) Prob, (x,)

1 x;1 —X Xy — X
010> 01 o))

To find the best value for y, find the maximum Prob or minimum

Note: x?, or Chi squared, is the sum of the squares of the deviations from the mean, divided by
the corresponding uncertainty.

Such methods are called “Methods of Least Squares”. They follow directly from the Principle of
Maximum Likelihood.

Intermediate 3870
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Weighted Averages

The probability of measuring two such measurements is

Prob, (x{,x,) = Prob, (x;) Prob, (x,)

1 x1 — X X, — X

= —e_)(z/z Whe're XZ = [g] 2 + [w] 2
010> O (0}

To find the best value for y, find the maximum Prob or minimum

Best Estimate of x is from maximum probibility or minimum summation

Minimize Sum Solve for derivative wrst ¥ setto O Solve for best estimate of
e (= X}] [(x X}l (;.:1 X) ‘ {(x x}‘

. _ Wwixitwaxy ZWL' X; _ 1
This leads to Wavg =~ = v where w; = /(Ui)z

Note: If w,=w,, we recover the standard result X,,,,4= (1/2) (X;+X5)

Finally, the width of a weighted average distribution is

1
Gwieg hted avg —
2i

Intermediate 3870
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Weighted Averages on Steroids

A very powerful method for combining data from different sources
with different methods and uncertainties (or, indeed, data of
related measured and calculated quantities) is Kalman filtering.

The Kalman filter, also known as Prior knowledge Py _:Bz‘;i:;i:::tg“"
linear quadratic estimation (LQE), of state Xk-1k-1  physical model
IS an algorithm that uses a series . A |
of measurements observed over Next timestep  Pkli—1
time, containing noise (random kek+1 Xl k-1
variations) and other A |
inaccuracies, and produces Pk Update step Measurements
estimates of unknown variables Xy <—Compare prediton == yi | &
that tend to be more precise than |
those based on a single { Output estimate
. of state
measurement alone.

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the
estimate. The estimate is updated using a state transition model and measurements. X, denotes the
estimate of the system's state at time step k before the k' measurement y, has been taken into account; Py ;
is the corresponding uncertainty. --Wikipedia, 2013.

Ludger Scherliess, of USU Physics, is a world expert at using Kalman filtering for the assimilation
of satellite and ground-based data and the USU GAMES model to predict space weather .

Intermediate 3870
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Intermediate Lab
PHYS 3870

Rejecting Data
Chauvenet’s Criterion

References: Taylor Ch. 6
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Rejecting Data

What Is a good criteria for
rejecting data?

Question: When is it “reasonable” to discard a seemingly
“unreasonable” data point from a set of randomly distributed
measurements?

* Never
 Whenever it makes things look better
« Chauvenet’s criterion provides a (quantitative) compromise
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Rejecting Data
Zallen’s Criterion

Question: When is it “reasonable” to discard a seemingly
“unreasonable” data point from a set of randomly distributed
measurements?

Often in physics, experimental observations are termed
““anomalous’’ before they are understood. Once theory succeeds in explaining
and illuminating the observations, they are no longer ‘‘anomalous’ and in-
stead come to be regarded as “‘obvious.’”’ A crucial paper can trigger such an
““anomalous — obvious’’ transition, and in the present case that key role was
played by a 1975 paper by Scher and Montroll. That landmark paper has be-
come basic to our understanding of a striking characteristic of carrier motion
(now called dispersive transport) which is a common occurrence in amorphous
semiconductors, though foreign to our experience with crystals.
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Rejecting Data
Disney’s Criterion

Question: When is it “reasonable” to discard a seemingly
“unreasonable” data point from a set of randomly distributed
measurements?

 Whenever it makes things look better

Disney’s First Law

~lv

Wishing will make it so. | az ﬁ
Disney’s Second Law - | u} u.. 213 ;

Dreams are more colorful than reality.
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Rejecting Data
Chauvenet’s Criterion

Data may be rejected if the expected number of measurements at
least as deviant as the suspect measurement is less than 50%.

Consider a set of N measurements of a single quantity

Calculate <x> and oy and then determine the fractional deviations from the mean of all
the points:

|x; — X|

Xfrac_dev = p
x

For the suspect point(s), Xsuspect, find the probability of such a point occurring in N
measurements G,l)

n = (expected number as deviant as Xsuspect)

=N PrOb(OUtSIde Xsuspect-o'x)
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Error Function of Gaussian Distribution

Error Function: (probability that —to<x<+to ).

Prob(within to) = % j e dr, (5.35)
T ' 1

Error Function: Tabulated values-see App. A.

1005 F-—=e === e ————————— 9&?% i?g%
i | 95.4% l {
| 1 i I
T [ | 1 ]
iy ) | I 1
L | 68% i l i
= I i 1 1
£ 50%f----- ! : : |
B PR i i i
%’ b i i i
i 1 I | 1
e, ] b l I |
b | i i
| I | | [}
(I P | ] | 1 ] NI N I
0 b 2 3 4
Area under curve 0674
(probability that _
—to<x<+to) is given ' ‘u 025 05 075 10 125 15 175 20 25 30 35 40

in Table at right.

— 3 Prob (%) [T 20 38 55 68 79 87 92 054 988 997 09.95 $9.99

Figure 5.13. The probability Prob(within to} that a measuremnent of x will fall within ¢ stan-
) F dard deviations of the true value x = X. Two common names for this function are the normal 2r-
Probable Error: (probability that ror integral and the error function, erf(s).

—0.670<x<+0.670) is 50%.
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Chauvenet’s Criterion

[ees ,
(x==X)"
The probability that a data { B 7.2
point is likely to fall outside a Pmb{xteg_t,}i,u'} =1- e - T
given deviation is: ' a-yf2-m
= [rese
X= Frac Dev = ; 3
— Pr':'b*xiﬁma:n:crﬂ =
o i |
g g Including all data points
0| 457 0| 0.468 0.68
1| 462 1| 0.281 0.61
2 q_ﬁ.g 2 D.Dlg D.SD? m:= ﬂ'lEE.ﬂ(X:} = -1-1595ﬂ1
1.66°10-3
: 4.8 : 2.936 Ty, = stdev(x) = 2.673m
4| 461 4| 0.318 0.625
5| 452 5 | 0.655 0.744 - - -
. . Excluding the rejected data point
6| 45.4 6 0.58 0.713
0.653
8 45.9 8 0.393 Ty = stdﬂ'{};}:H} =0.57Tm
0.596 w0 -
0 46.3 0 0.243
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Chauvenet’s Criterion—Example 1

Example: Ten Measurements of a Length
A student makes 10 measurements of one length x and gets the results (all in mm)

A6, 48, 44, 38, 45, 47, 58, 44, 45, 43,

Noticing that the value 38 seems anomalously large, he checks his records but can
find no evidence that the result was caused by a mistake. He therefore applies
Chauvenet’s criterion. What does he conclude?

Accepting provisionally all 10 measurements, he computes

¥ =458 and o, = 5.1
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Chauvenet’s Details (1)

The difference between the suspect value x,,, = 58 and the mean X = 45.8 is
12.2, or 2.4 standard deviations; that is,
N Tus — X _ 58 — 458
i T, 5.1

2.4,

Referring to the table in Appendix A, he sees that the probability that a measurement
will differ from X by 2.40, or more is
Prob{outside 2.40) = 1 — Prob(within 2.40)
= 1 — 0.984
= (.016. _
In 10 measurements, he would therefore expect to find only (.16 of one measure-
ment as deviant as his suspect result. Because 0.16 is less than the number 0.5 set

by Chauvenet’s criterion, he should at least consider rejecting the result. -
If he decides to reject the suspect 58, then he must recalculate X and o, as

¥ =444 and o, = 29.

As you would expect, his mean changes a bit, and his standard deviation drops
appreciably.
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Chauvenet’s Criterion—Detalils (2)

Consider the following example of the application of Chauvenet's Criterion to determine if a certain datum
should be rejected.

A set of N=10 measurements of a length are made. The data are assumed to be described by a randon
Gaussian distribution.

Enter Data
Mumber of data points: N=10
Data indices: 1=0_(N-1)
i =
Enter data set: 1
57 m Calculate mean: Xppaan = Mean(x) = 46 95m
402 - m Calculate standard deviation: ¢, = stdev(x) = 2.673m
469-m *
548 - m
. 11 — Emean
461 - m Calculate fractional Frac_Dev. = | ——
452-m deviation from the mean: ' oy
454 - m
470 - m
459-m
463 - m
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To apply Chauvenet's criterion, we first sort the data x in order of ascending values of the fractional
deviation from the mean. The probability that a data point is likely to fall outside a given deviation is then
calculated. We then determine how many data that should be eliminated based on Chauvenet's

Sort data in ascending order: Rorder -= “""(a“gmm i’ch—Dﬂj’ 1] C h a uv e n et, s
T e Criterion—

The probability that a data 202
-F

L ) 1
point is likely to fall outside a Prob(xpy. X.0) = 1 — ——— e -
given deviation is: o2 Det al I S (3)

= [ried
Apply Chauvenet's criterion: Reject(x X, o, N) == if [N - Prob(x, X, a)) > 50 - %, "Keep" . "Reject” ]
Determine how many data N
points should be rejected: Nrsject = Z lfl:[N ' Pmb(xi’xmm’g"n >30-%.0, 1:| =1
1=10
‘o w = Prob(xi, xmm,crx] =N- Pmb{xi,xmm,crx] = Rf,jtct{xi, xmm,crx,N) =
0 -m 0 0.68 6.8 0

0 45.7 0 46.759 0.61 6.105 0 "Keep"

1 46.2 1 28.055 0.507 5.075 1 "Keep"

2 46.9 2 1.87 1.66°10-3 0.017 2 "Keep"

3 54.8 3 293.645 0.625 6.247 3 "Reject”

4 46.1 4 31.796 0.744 7.436 4 "Keep"

5 45.2 5 65.462 0.719 7.19 5 "Keep"

6 45.4 6 57.981 0.493 4.925 6 "Keep"

7 47 7 1.87 0.653 6.528 7 "Keep"

8 45.9 8 39.277 0.596 5.961 8 "Keep"

9 46.3 9 24,315 9 "Keep"
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Frac_Dev , !
‘- T = Pmb(xi, xm:m,crx) =N- Prob(xi,xm,::r:) = R.EJEET(Hi, xmm,crx,N) .
0 -l 0 0.68 6.8 0
0| 45.7 0| 46.759 0.61 6.105 0| "Keep" C h t!
1| 46.2 1 28.055 0.507 5.075 1 "Keep" a uve n e s
2| 46.9 2 1.87 1.66°103 0.017 2 "Keep" C . t .
3 54.8 3 293.645 0.625 6.247 3 "Reject” r I e r I O n
4 45.1 4 31.796 0.744 7.436 4 "Keep"
5| 452 5 65.462 0.719 7.19 5 "Keep” EX al | | p I e 2
& 45.4 <] 57.981 0.493 4.925 6 "Keep"
7 47 7 1.87 0.653 6.528 7 "Keep"
8 45.9 8 39.277 0.596 5.961 g "Keep"
9 45.3 9 24,315 9 "Keep"
Now recalculate the mean and standard deviation after rejecting N, ., data points.
Truncated data set indices and data amay: J=0.N-1-Npyu Xem = Xoder 0
] 1
The final analysis is:
Including all data points Excluding the rejected data point
Number data points: N=10 N - Nigject = 9
Mean: X =mean(x) = 46.95m Xpean = mean[XCH} = 46078
Standard Deviation: T = stdev(x) = 2.673m Ty = stdev(Xcy) = 0.577
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Intermediate Lab
PHYS 3870

Summary of Probability Theory
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Probabilil pction (Discrele Case)
The resucom variable X will be called a discrete random variable if there exists a func-
tion f such that f(z;) > 0 and Ef(z.-) = 1fori=1,2 3,...andsuch that for any

A}
event E,

P(E) = P[X is in E] = z (=)
B

where 2 means sum f(z) over those values z; that are in E and where f(z) = P[X = zl.
;- ;

The probability that the value of X is some real number z, is given by f(z) = P[X = 1],
where f is called the probability function of the random variable X.

Cumulative Distribution Funclion (Discrele Case)

The probability that the value of a random variable X is less than or equal to some
real number z is defined as

F(z) = P(X < 2)
= Zf(z), -0 <1< ™,

where the summation extends over those values of ¢ such that z; < z.

Probability Densily (Continuous Case)

The random variable X will be called a continuous random variable if there exists &
function f such that f(z) > 0 and [_'_ f(z) dz = 1 for all zin interval —® < z < w snd
such that for any event E

P(E) = P(X isin E) = [ 1(z) d.

f(z) is called the probsbility density of the random variable X. The probability that X
assumes any given value of z is equal to zero and the probability that it assumes a value
on the interval from a to b, including or excluding either end point, is equal to

[} 1) az.
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Probability Denaily (Continuous Case) S u m m ar Y Of

The random variable X will be called a continuous random variable if there exists a

function f such that f(z) > 0and [ f(z) dz = 1 forall zininterval —~® < z < « snd 1t
mc:xthatforcunyoventE - / ’ Nk ’ PrObabIIItY
P(E) = PXisin E) = [,f(z) dz. heor\i_”

f(z) is called the probability density of the random variable X. The probability that X
assumes any given value of z is equal to zero and the probability that it assumes a value
on the interval from a to b, including or excluding either end point, is equal to

[ 1) az.

Cumulative Distribulion Function (Continuous Case)

The probability that the value of a random variable X is less than or equal to some
real number z is defined as

Fiz) =PX <1), =—-w<z<w
= [[.1@) az.

From the cumulative distribution, the density, if it exiats, can be found from
dF
o) = 2 -
From the cumulative distribution

PlesXsh=PX<b —-PX<a)
= F(b) — F(a)
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Summary of Probability Theory-lll

Mathemalical Ezpectation )

A. Expecrep VALUR

Let X be a random variable with density f(z). Then the expected value of X, E(X),
is defined to be

B(X) = ), 2f(2)

if X is discrete and

BX) = [, 3f(a) dz

if X is continuous. The expected value of a function g of a random variable X is defined as

Elg(X)] = ) o(z) *§(2)

if X is discrete and

ElgX)] = [, 9(z) - (x) dz
if X is continuous.
Theorems

1. ElaX + bY] = aE(X) 4 bE(Y)
2. E[X Y] = E(X) - E(Y) if X and Y are statistically independent.
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Summary of Probability Theory-1V

B. MomMENTS

a. Moments About the Origin. The moments about the origin of & probability dis.tri-
bution are the expected values of the random variable which has the given distribution.
The rth moment of X, usually denoted by 4’ is defined as

Wo = EIX] = ) 2f(2)

if X is discrete and -
Wy = EX] = [ 2f(a) dz

if X is continuous.

The first moment, x's, is called the mean of the random variable X and is usually
denoted by u.

b. Moments About the Mean. The rth moment about the mean, usually denoted by
p, i8 defined as

oo = BIX — ) =), (2 = w)f(a)

if X is discrete and
b= B(X = w1 = [ (2 — @) ds

if X is continuous.
The second moment about the mean, u,, is given by

pr = E[(X — p)?] =p's— »?

ami is called the variance of the random variable X, and is denoted by «*. The square root
of the variance, o, is called the standard deviation.

Theorems
1. &'x = clo’x

2. d’,.;.x - v‘gx
3. 0’.x+5 - a'a'x
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