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Distribution Functions 

References:  Taylor Ch.  5 (and Chs. 10 and 11 for Reference) 

  Taylor Ch.  6 and 7 

Also refer to “Glossary of Important Terms in Error Analysis” 

        “Probability Cheat Sheet” 
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Practical Methods to Calculate Mean and St. Deviation 

We need to develop a good way to tally, display, and think about 

a collection of repeated measurements of the same quantity. 

Here is where we are headed: 
•  Develop the notion of a probability distribution function, a distribution to 

describe the probable outcomes of a measurement 

•  Define what a distribution function is, and its properties 

•  Look at the properties of the most common distribution function, the Gaussian 

distribution for purely random events 

•  Introduce other probability distribution functions 
 

We will develop the mathematical basis for: 
•  Mean 

•  Standard deviation 

•  Standard deviation of the mean (SDOM) 

•  Moments and expectation values 

•  Error propagation formulas 

•  Addition of errors in quadrature (for independent and random measurements) 

•  Schwartz inequality (i.e., the uncertainty principle)  (next lecture) 

•  Numerical values for confidence limits (t-test) 

•  Principle of maximal likelihood 

•  Central limit theorem 
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Two Practical Exercises in Probabilities  

Roll a pair of dice 50 times and record the results 

Flip Penny 50 times and record the results Flip a penny 50 times and record the results 

Grab a partner and a 

set of instructions 

and complete the 

exercise. 
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Flip a penny 50 times and record the results 

Two Practical Exercises in Probabilities  

What is the asymmetry of the results? 
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Two Practical Exercises in Probabilities  

Flip a penny 50 times and record the results 

What is the asymmetry of the results? 

4% asymmetry ??% asymmetry 
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Two Practical Exercises in Probabilities  

Roll a pair of dice 50 times and record the results 

What is the mean value?   

The standard deviation? 
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Two Practical Exercises in Probabilities  

Roll a pair of dice 50 times and record the results 

What is the mean value?   

 

The standard deviation? 

 

What is the asymmetry 

(kurtosis)? 

 

What is the probability of 

rolling a 4? 
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Discrete Distribution Functions 

A data set to play with Written in terms of “occurrence” F 

The mean value 
In terms of fractional expectations 

Fractional expectations 

Normalization condition 

Mean value 

(This is just a weighted sum.) 
 
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Limit of Discrete Distribution Functions 

“Normalizing” data sets 

Binned data sets 

fk ≡ fractional occurrence 

∆k ≡ bin width 

Mean value: 

Normalization: 

Expected value: 𝑃𝑟𝑜𝑏 4 =
𝐹4

𝑁
= 𝑓4  

𝑋 =  𝐹𝑘

𝑘

𝑥𝑘 =  (𝑓𝑘
𝑘

Δ𝑘)𝑥𝑘  

1 =
 (𝑓𝑘𝑘 Δ𝑘)𝑥𝑘

 Δ𝑘𝑘
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Limits of Distribution Functions 

Consider the limiting distribution function as N ȸ and ∆k0 

Larger data sets 

Mathcad Games: 
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Continuous Distribution Functions 

Central (mean) Value Width of Distribution 

Meaning of Distribution Interval 

Normalization of Distribution 

 
 

 
 

Thus 

and by extension 

= fraction of measurements 

that fall within a<x<b 
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Moments of Distribution Functions 

The first moment for a probability distribution function is 
 

          𝑥 ≡  𝑥 = 𝑓𝑖𝑟𝑠𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 =  𝑥 𝑓(𝑥)
+∞

−∞
𝑑𝑥 

 

For a general distribution function, 
 

          𝑥 ≡  𝑥 = 𝑓𝑖𝑟𝑠𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 =
 𝑥 𝑔(𝑥)

+∞
−∞

𝑑𝑥

  𝑔(𝑥)
+∞
−∞

𝑑𝑥
  

 
Generalizing, the n

th
 moment is  

          𝑥𝑛 ≡  𝑥𝑛  = 𝑛𝑡ℎ 𝑚𝑜𝑚𝑒𝑛𝑡 =
 𝑥𝑛  𝑔(𝑥)

+∞
−∞

𝑑𝑥

  𝑔(𝑥)
+∞
−∞

𝑑𝑥
=  𝑥𝑛  𝑓(𝑥)

+∞

−∞
𝑑𝑥 

 

O
th
 moment ≡ N  2

nd
 moment ≡   𝑥 − 𝑥  2 →  𝑥2  

1
st
 moment ≡ 𝑥    3

rd
 moment ≡ kurtosis 

0 (for a centered distribution) 
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Moments of Distribution Functions 

Generalizing, the n
th

 moment is  

          𝑥𝑛 ≡  𝑥𝑛  = 𝑛𝑡ℎ 𝑚𝑜𝑚𝑒𝑛𝑡 =
 𝑥𝑛  𝑔(𝑥)

+∞
−∞

𝑑𝑥

  𝑔(𝑥)
+∞
−∞

𝑑𝑥
=  𝑥𝑛  𝑓(𝑥)

+∞

−∞
𝑑𝑥 

 

O
th

 moment ≡ N   2
nd

 moment ≡   𝑥 − 𝑥  2 →  𝑥2  

1
st
 moment ≡ 𝑥    3

rd
 moment ≡ kurtosis 

 

 

The n
th

 moment about the mean is  
 

         𝜇𝑛 ≡   𝑥 − 𝑥  𝑛  = 𝑛𝑡ℎ 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 
 

              =
  𝑥−𝑥  𝑛  𝑔(𝑥)

+∞
−∞

𝑑𝑥

  𝑔(𝑥)
+∞
−∞

𝑑𝑥
=   𝑥 − 𝑥  𝑛  𝑓(𝑥)

+∞

−∞
𝑑𝑥 

 

The standard deviation (or second moment about the mean) is 
 

          𝜎𝑥
2 ≡ 𝜇2 ≡   𝑥 − 𝑥  2 = 2𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 

 

               =
  𝑥−𝑥  2  𝑔(𝑥)

+∞
−∞

𝑑𝑥

  𝑔(𝑥)
+∞
−∞

𝑑𝑥
=   𝑥 − 𝑥  2  𝑓(𝑥)

+∞

−∞
𝑑𝑥 

 

0 
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Example of Continuous Distribution Functions and Expectation Values 
Harmonic Oscillator: Example from Mechanics 

Expected Values           

The expectation value of a function Ɍ(x) is  

 

           Ɍ x  ≡
 Ɍ x 𝑔 𝑥 

+∞

−∞
𝑑𝑥

  𝑔 𝑥 
+∞

−∞
𝑑𝑥

 

 

                    =  Ɍ(x) 𝑓(𝑥)
+∞

−∞
𝑑𝑥 



DISTRIBUTION FUNCTIONS 

Introduction    Section 0     Lecture  1     Slide  16 

Lecture  3   Slide  16 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

Example of Continuous Distribution Functions and Expectation Values 
Boltzmann Distribution: Example from Kinetic Theory 

Expected Values           

The expectation value of a function 

Ɍ(x) is  

 

           Ɍ x  ≡
 Ɍ x 𝑔 𝑥 

+∞

−∞
𝑑𝑥

  𝑔 𝑥 
+∞

−∞
𝑑𝑥

 

 

                    =  Ɍ(x) 𝑓(𝑥)
+∞

−∞
𝑑𝑥 

The Boltzmann distribution function for velocities of particles as 

a function of temperature, T is:  

𝑃 𝑣; 𝑇 = 4𝜋  
𝑀

2𝜋 𝑘𝐵𝑇
 

3 2 

𝑣2𝑒𝑥𝑝

 
 
 
 
 

1
2
𝑀𝑣2

1
2
𝑘𝐵𝑇

 

 
 
 
 
 

 

Then 

           v =  𝑣 𝑃(𝑣)
+∞

−∞
𝑑𝑣 =  

8 𝑘𝐵𝑇
𝜋 𝑀

  
1 2 

 

 

           v2 =  v2  𝑃(𝑣)
+∞

−∞
𝑑𝑣 =  

3 𝑘𝐵𝑇
 𝑀

  
1 2 

 

         implies  KE = 1

2
𝑀 v2 =

3

2
𝑘𝐵𝑇 

 

          vpeak=
  

2 𝑘𝐵𝑇
 𝑀

  
1 2 

=  2
 3  

1 2 

 v2  
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Example of Continuous Distribution Functions and Expectation Values 
Fermi-Dirac Distribution: Example from Kinetic Theory 

For a system of identical fermions, the average number of fermions in a single-particle state , is given 

by the Fermi–Dirac (F–D) distribution,  

 

where kB is Boltzmann's constant, T is the absolute temperature,  is the energy of the single-particle 

state , and μ is the total chemical potential.  

 

Since the F–D distribution was derived using the Pauli exclusion principle, which allows at most one 

electron to occupy each possible state, a result is that   

When a quasi-continuum of energies  has an associated density of states  (i.e. the number of 

states per unit energy range per unit volume) the average number of fermions per unit energy range 

per unit volume is, 

 

 

where  is called the Fermi function  

 

so that, 
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Example of Continuous Distribution Functions and Expectation Values 
Finite Square Well: Example from Quantum Mechanics 

Expectation Values The expectation value of a QM operator O(x) is    O x  ≡
 Ψ∗ x 𝑂 𝑥 

+∞

−∞
Ψ x 𝑑𝑥

  Ψ∗ x Ψ x 
+∞

−∞
𝑑𝑥

 

 

  For a finite square well of width L,  Ψn x =  2
L  sin  

n π x

L
  

 

 Ψn
∗ x |Ψn x  ≡

 Ψn
∗ x 𝑂 𝑥 

+∞

−∞
Ψn x 𝑑𝑥

  Ψn
∗ x Ψn x 

+∞

−∞
𝑑𝑥

= 1 

 

 𝑥 =  Ψn
∗ x |x|Ψn x  ≡

 Ψn
∗ x 𝑥

+∞

−∞
Ψn x 𝑑𝑥

  Ψn
∗ x Ψn x 

+∞

−∞
𝑑𝑥

= 𝐿/2 

 

 𝑝 =  Ψn
∗ x |

ℏ

i

∂

∂x
|Ψn x  ≡

 Ψn
∗ x 

ℏ
i

∂
∂x

+∞

−∞
Ψn x 𝑑𝑥

  Ψn
∗ x Ψn x 

+∞

−∞
𝑑𝑥

= 0 

 

 𝐸𝑛  =  Ψn
∗ x |iℏ

∂

∂t
|Ψn x  ≡

 Ψn
∗ x iℏ

∂
∂t

+∞

−∞
Ψn x 𝑑𝑥

  Ψn
∗ x Ψn x 

+∞

−∞
𝑑𝑥

=
𝑛2𝜋2ℏ2

2 𝑚 𝐿2  
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Summary of Distribution Functions 

Available 

on web site 
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The Gaussian Distribution 

Function 

References:  Taylor Ch.  5  
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Gaussian Integrals 

 

Factorial Approximations 
 

𝑛! ≈  2𝜋𝑛 1 2  𝑛𝑛  𝑒𝑥𝑝  −𝑛 + 1

12 𝑛
+ 𝑂  

1

𝑛2    

 

𝑙𝑜𝑔 𝑛! ≈ 1

2
 𝑙𝑜𝑔 2𝜋 +  𝑛 +

1

2
 log 𝑛 − 𝑛 +

1

12 𝑛
+ 𝑂  

1

𝑛2   

 

𝑙𝑜𝑔 𝑛! ≈ 𝑛 log 𝑛 − 𝑛  (for all terms decreasing faster than linearly with n) 

 

Gaussian Integrals 
 

𝐼𝑚 = 2  𝑥𝑚  exp⁡(−𝑥2)
∞

0
 𝑑𝑥          ; m>-1 

 

𝐼𝑚 = 2  𝑦𝑛  exp⁡(−𝑦)
∞

0
 𝑑𝑦 ≡ Γ(𝑛 + 1)          ; 𝑥2 ≡ 𝑦,   2 𝑑𝑥 = 𝑦1 2  𝑑𝑦,     𝑛 ≡ 1

2
 (𝑚 − 1) 

 

𝐼0 = Γ  𝑛 =
1

2
 =   𝜋          ; m=0,   𝑛 = −1

2
 

 

𝐼2 𝑘 = Γ  𝑘 +
1

2
 =  𝑘 − 1

2   𝑘 − 3
2  . . .  3

2   1
2    𝜋          ; even m    m=2 k>0,   𝑛 = 𝑘 − 1

2
 

 

𝐼2 𝑘+1 = Γ 𝑘 + 1 = 𝑘!          ; odd m    m=2 k+1>0,   𝑛 = 𝑘 ≥ 0 
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Gaussian Distribution Function 

Width of Distribution 

(standard deviation) 

Center of Distribution 

(mean) Distribution  

Function 

Independent  

Variable 

Gaussian Distribution Function 

Normalization 

Constant 
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Effects of Increasing N on Gaussian Distribution Functions 

Consider the limiting distribution function as N ∞ and dx0 
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Defining the Gaussian 

distribution function 

in Mathcad 

I suggest you “investigate” 

these with the Mathcad sheet 

on the web site 
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Using Mathcad to 

define other common 

distribution functions. 

 

Consider the limiting 

distribution function 

as N ȸ and ∆k0 
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Consider the Gaussian distribution function 

Use the normalization condition to 

evaluate the normalization constant 

(see Taylor, p. 132) 

The mean, Ẋ, is the first moment 

of the Gaussian distribution 

function (see Taylor, p. 134) 

The standard deviation, σx, is the standard 

deviation of the mean of the Gaussian 

distribution function (see Taylor, p. 143) 

Gaussian Distribution Moments  
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When is mean x not Xbest? 

Answer:  When the 

distribution is not 

symmetric about X. 

 

Example:  Cauchy 

Distribution 
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When is mean x not Xbest? 
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When is mean x not Xbest? 

Answer:  When the 

distribution is has 

more than one peak. 
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The Gaussian Distribution 

Function and Its Relation to 

Errors 
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A Review of Probabilities in Combination 

Probability of a data set of N like measurements, (x1,x2,…xN) 

 

                     P (x1,x2,…xN) = P(x)1*P(x2)*…P(xN) 

1 head          AND          1 Four 

             P(H,4) = P(H) * P(4) 

1 head          OR            1 Four 

 P(H,4) = P(H) + P(4) - P(H and 4) 
(true for a  “non-mutually exclusive” events) 

NOT   1   Six 

P(NOT 6) = 1 - P(6) 

1 Six     OR            1 Four 

             P(6,4) = P(6) + P(4) 
(true for a  “mutually exclusive” single role) 
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The Gaussian Distribution Function and Its Relation to Errors 

We will use the Gaussian distribution as applied to random 

variables to develop the mathematical basis for: 
•  Mean 

•  Standard deviation 

•  Standard deviation of the mean (SDOM) 

•  Moments and expectation values 

•  Error propagation formulas 

•  Addition of errors in quadrature (for independent and random 

measurements) 

•  Numerical values for confidence limits (t-test) 

•  Principle of maximal likelihood 

•  Central limit theorem 

•  Weighted distributions and Chi squared 

•  Schwartz inequality (i.e., the uncertainty principle) (next lecture) 
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Consider the Gaussian distribution function 

Use the normalization condition to 

evaluate the normalization constant 

(see Taylor, p. 132) 

The mean, Ẋ, is the first moment 

of the Gaussian distribution 

function (see Taylor, p. 134) 

The standard deviation, σx, is the standard 

deviation of the mean of the Gaussian 

distribution function (see Taylor, p. 143) 

Gaussian Distribution Moments  
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Standard Deviation of Gaussian Distribution 

Area under curve 

(probability that  

–σ<x<+σ) is 68% 

5% or ~2σ “Significant” 

1% or ~3σ “Highly Significant” 

1σ “Within errors” 

5 ppm or ~5σ “Valid for HEP” 

See Sec. 10.6: Testing of 

Hypotheses 

More complete Table in App. A and B 

Ah, that’s 

highly 

significant! 
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Error Function of Gaussian Distribution 

Area under curve 

(probability that  

–tσ<x<+tσ) is given 

in Table at right. 

Probable Error: (probability that  

–0.67σ<x<+0.67σ) is 50%.   

Error Function: (probability that  –tσ<x<+tσ ).   

Error Function: Tabulated values-see App. A. 

Complementary Error Function:  

(probability that  –x<-tσ AND x>+tσ ). 

Prob(x outside tσ) = 1 - Prob(x within tσ)   

More complete Table in App. A and B 



DISTRIBUTION FUNCTIONS 

Introduction    Section 0     Lecture  1     Slide  36 

Lecture  3   Slide  36 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

Useful Points on Gaussian Distribution 

Full Width at Half Maximum 
FWHM 

(See Prob. 5.12) 

Points of Inflection 
Occur at ±σ 

(See Prob. 5.13) 
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Error Analysis and Gaussian Distribution 

Adding a Constant Multiplying by a Constant 

XX+A XBX  and σB σ 
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Sum of Two Variables 

Consider the derived quantity 

Z=X + Y   

(with X=0 and Y=0) 

Error Propagation:  Addition 

Error in Z: 

Multiple two probabilities  
𝑃𝑟𝑜𝑏 𝑥, 𝑦 = 𝑃𝑟𝑜𝑏 𝑥 ∙ 𝑃𝑟𝑜𝑏 𝑥 ∝ 𝑒𝑥𝑝  −

1

2
 

𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2  

∝ 𝑒𝑥𝑝  −
1

2
 

(𝑥+𝑦)2

 𝜎𝑥
2+𝜎𝑦

2 
−𝑧2   

∝ 𝑒𝑥𝑝  −
1

2
 

(𝑥+𝑦)2

 𝜎𝑥
2+𝜎𝑦

2 
   𝑒𝑥𝑝  −

𝑧2

2
  

ICBST (Eq. 5.53)  

X+YZ  and   σx
2 + σy

2 
 σz

2  

(addition in quadrature for random, independent variables!)    

Integrates to √2π 
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General Formula for Error Propagation 

General formula for error propagation  see  [Taylor, Secs. 3.5 and 3.9] 

 

Uncertainty as a function of one variable  [Taylor, Sec. 3.5] 

 

1. Consider a graphical method of estimating error 

a) Consider an arbitaray function q(x) 

b) Plot q(x) vs. x. 

c) On the graph, label: 

(1) qbest = q(xbest)  

(2) qhi = q(xbest + δx)  

(3) qlow = q(xbest- δx)  

d) Making a linear approximation: 





























x

q
qxslopeqq

x

q
qxslopeqq

bestbestlow

bestbesthi





  

e) Therefore: 

x
x

q
q  




  

Note the absolute value. 

How do we determine the error of a derived quantity Z(X,Y,…) from errors in X,Y,…? 
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General Formula for Error Propagation 

General formula for uncertainty of a function of one variable   

 x
x

q
q  




   [Taylor, Eq. 3.23] 

Can you now derive for specific rules of error propagation:   

 

1. Addition and Subtraction   [Taylor, p. 49] 

2. Multiplication and Division  [Taylor, p. 51] 

3. Multiplication by a constant (exact number)   [Taylor, p. 54] 

4. Exponentiation  (powers)  [Taylor, p. 56] 
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General Formula for Multiple Variables 

Uncertainty of a function of multiple variables  [Taylor, Sec. 3.11] 

 

1.  It can easily (no, really) be shown that (see Taylor Sec. 3.11) for a 

function of several variables 

 

...,...),,( 













 z

z

q
y

y

q
x

x

q
zyxq 

 [Taylor, Eq. 3.47] 

2. More correctly, it can be shown that (see Taylor Sec. 3.11) for a 

function of several variables 

 

...,...),,( 













 z

z

q
y

y

q
x

x

q
zyxq 

 [Taylor, Eq. 3.47] 

 

where the equals sign represents an upper bound, as discussed above.  

 

3. For a function of several independent and random variables 

 

...,...),,(

222










































 z

z

q
y

y

q
x

x

q
zyxq 

[Taylor, Eq. 3.48] 

  

  Again, the proof is left for Ch. 5.  
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Product of Two Variables 

Consider the arbitrary derived quantity 

q(x,y) of two independent random variables x and y. 

 

Expand q(x,y) in a Taylor series about the expected values of x and y 

(i.e., at points near X and Y). 

Error Propagation:  General Case 

𝑞 𝑥, 𝑦 = 𝑞 𝑋, 𝑌 +   
𝜕𝑞

𝜕𝑥
  

𝑋
 𝑥 − 𝑋 +   

𝜕𝑞

𝜕𝑦
  

𝑌

(𝑦 − 𝑌) 

 

Fixed, shifts peak of distribution 

Fixed Distribution centered at X with width σX 

𝛿𝑞 𝑥, 𝑦 = 𝜎𝑞 =  𝑞 𝑋, 𝑌 +    
𝜕𝑞

𝜕𝑥
  

𝑋
𝜎𝑥 

2

+    
𝜕𝑞

𝜕𝑦
  

𝑌

𝜎𝑦 

2

 

 0 

How do we determine the error of a derived quantity Z(X,Y,…) from errors in X,Y,…? 
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SDOM of Gaussian Distribution 

Standard Deviation of the Mean 

The SDOM decreases as the square root of the number of measurements. 

 

That is, the relative width,  σ/Ẋ, of the distribution gets narrower as more 

measurements are made. 

Each measurement 

has similar σXi= σẊ  

 

 

 

 

and similar partial 

derivatives 
 

 

 

 

 

 

Thus… 
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Two Key Theorems from Probability 

Central Limit Theorem 

For random, independent measurements (each with a well-define 

expectation value and well-defined variance), the arithmetic mean 

(average) will be approximately normally distributed. 

Principle of Maximum Likelihood 

Given the N observed measurements, x1, x2,…xN, the best estimates 

for Ẋ and σ are those values for which the observed x1, x2,…xN,  are 

most likely.  
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Mean of Gaussian Distribution as “Best Estimate” 

Principle of Maximum Likelihood 

Best Estimate of X is from maximum probability or minimum summation 

Consider a data set   

Each randomly distributed with 

{x1, x2, x3 …xN } 

  

To find the most likely value of the mean (the best estimate of ẋ),  

find X that yields the highest probability for the data set. 

The combined probability for the full data set is the product 

  

Minimize 

Sum 

Solve for 

derivative wrst 

X set to 0 

Best 

estimate 

of X 

∝
1

𝜎
𝑒−(𝑥1−𝑋)2 2𝜎 ×

1

𝜎
𝑒−(𝑥2−𝑋)2 2𝜎 × … ×

1

𝜎
𝑒−(𝑥𝑁−𝑋)2 2𝜎 =

1

𝜎𝑁
𝑒 −(𝑥𝑖−𝑋)2 2𝜎  
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Uncertainty of “Best Estimates” of Gaussian Distribution 
Principle of Maximum Likelihood 

Best Estimate of X is from maximum probability or minimum summation 

Consider a data set   {x1, x2, x3 …xN } 

  

To find the most likely value of the standard deviation (the best estimate of 

the width of the x distribution), find σx that yields the highest probability for 

the data set. 

The combined probability for the full data set is the product 

  

Minimize 

Sum 

Solve for 

derivative  

wrst X set to 0 

Best 

estimate 

of X 

Best Estimate of σ is from maximum probability or minimum summation 

Minimize 

Sum 

Best 

estimate 

of σ 

Solve for 

derivative  

wrst σ set to 0 

See  

Prob. 5.26 

∝
1

𝜎
𝑒−(𝑥1−𝑋)2 2𝜎 ×

1

𝜎
𝑒−(𝑥2−𝑋)2 2𝜎 × … ×

1

𝜎
𝑒−(𝑥𝑁−𝑋)2 2𝜎 =

1

𝜎𝑁
𝑒 −(𝑥𝑖−𝑋)2 2𝜎  
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Intermediate Lab  
PHYS 3870 

Combining Data Sets 

Weighted Averages 

References:  Taylor Ch.  7  
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Weighted Averages 

Question:  How can we properly combine two or more separate 

independent measurements of the same randomly distributed 

quantity to determine a best combined value with uncertainty? 
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Consider two measurements of the same quantity, described by a random Gaussian distribution 

 

 <x1>  x1     and  <x2>  x2      

 

The probability of measuring two such measurements is 

 

𝑃𝑟𝑜𝑏𝑥 𝑥1, 𝑥2 = 𝑃𝑟𝑜𝑏𝑥 𝑥1  𝑃𝑟𝑜𝑏𝑥 𝑥2  
 

=  
1

𝜎1𝜎2
𝑒−𝜒2/2   𝑤ℎ𝑒𝑟𝑒  𝜒2 ≡  

 𝑥1 − 𝑋 

𝜎1 
  2 +  

 𝑥2 − 𝑋 

𝜎2 
  2 

 

To find the best value for χ, find the maximum Prob or minimum χ
2
 

Weighted Averages 

Assume negligible systematic errors. 

Note: χ2 , or Chi squared, is the sum of the squares of the deviations from the mean, divided by 

the corresponding uncertainty. 

Such methods are called “Methods of Least Squares”.  They follow directly from the Principle of 

Maximum Likelihood. 
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The probability of measuring two such measurements is 

 

𝑃𝑟𝑜𝑏𝑥 𝑥1, 𝑥2 = 𝑃𝑟𝑜𝑏𝑥 𝑥1  𝑃𝑟𝑜𝑏𝑥 𝑥2  
 

=  
1

𝜎1𝜎2
𝑒−𝜒2/2   𝑤ℎ𝑒𝑟𝑒  𝜒2 ≡  

 𝑥1 − 𝑋 

𝜎1 
  2 +  

 𝑥2 − 𝑋 

𝜎2 
  2 

 

To find the best value for χ, find the maximum Prob or minimum χ
2
 

Weighted Averages 

This leads to         𝑥𝑊_𝑎𝑣𝑔 =  
𝑤1𝑥1+𝑤2𝑥2

𝑤1+𝑤2
=

 𝑤𝑖  𝑥𝑖

 𝑤𝑖
   𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 =  1

 𝜎𝑖 2   

Best Estimate of χ is from maximum probibility or minimum summation 

Minimize Sum Solve for best estimate of χ Solve for derivative wrst χ set to 0 

Note:  If w1=w2, we recover the standard result Xwavg= (1/2) (x1+x2) 

Finally, the width of a weighted average distribution is 

𝜎𝑤𝑖𝑒𝑔 ℎ𝑡𝑒𝑑  𝑎𝑣𝑔 =  
1

 𝑤𝑖𝑖
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Weighted Averages on Steroids 

A very powerful method for combining data from different sources 

with different methods and uncertainties (or, indeed, data of 

related measured and calculated quantities) is Kalman filtering. 

 
The Kalman filter, also known as 

linear quadratic estimation (LQE), 

is an algorithm that uses a series 

of measurements observed over 

time, containing noise (random 

variations) and other 

inaccuracies, and produces 

estimates of unknown variables 

that tend to be more precise than 

those based on a single 

measurement alone. 

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the 

estimate. The estimate is updated using a state transition model and measurements. xk|k-1 denotes the 

estimate of the system's state at time step k before the kth measurement yk has been taken into account; Pk|k-1 

is the corresponding uncertainty.  --Wikipedia, 2013. 

Ludger Scherliess, of USU Physics, is a world expert at using Kalman filtering for the assimilation 

of satellite and ground-based data and the USU GAMES model to predict  space weather . 
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Intermediate Lab  
PHYS 3870 

Rejecting Data 

Chauvenet’s Criterion 

References:  Taylor Ch.  6  
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Question:  When is it “reasonable” to discard a seemingly 

“unreasonable” data point from a set of randomly distributed 

measurements? 

 

•  Never  

•  Whenever it makes things look better 

•  Chauvenet’s criterion provides a (quantitative) compromise 

Rejecting Data 

 

What is a good criteria for 

rejecting data? 
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Question:  When is it “reasonable” to discard a seemingly 

“unreasonable” data point from a set of randomly distributed 

measurements? 

 

•  Never  

Rejecting Data 

Zallen’s Criterion 
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Question:  When is it “reasonable” to discard a seemingly 

“unreasonable” data point from a set of randomly distributed 

measurements? 

 

•  Whenever it makes things look better 

Rejecting Data 

Disney’s Criterion 

Disney’s First Law 

 

Wishing will make it so. 

 

Disney’s Second Law 

 

Dreams are more colorful than reality. 
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Data may be rejected if the expected number of measurements at 

least as deviant as the suspect measurement is less than 50%. 

Consider a set of N measurements of a single quantity 

 

{ x1,x2, ……xN } 

 

Calculate <x> and σx and then determine the fractional deviations from the mean of all 

the points: 

 

 

 

For the suspect point(s), xsuspect, find the probability of such a point occurring in N 

measurements 

 

n = (expected number as deviant as xsuspect) 

 

   = N Prob(outside xsuspect·σx) 

Rejecting Data 

Chauvenet’s Criterion 
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Error Function of Gaussian Distribution 

Area under curve 

(probability that  

–tσ<x<+tσ) is given 

in Table at right. 

Probable Error: (probability that  

–0.67σ<x<+0.67σ) is 50%.   

Error Function: (probability that  –tσ<x<+tσ ).   

Error Function: Tabulated values-see App. A. 
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Chauvenet’s Criterion 
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Chauvenet’s Criterion—Example 1 
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Chauvenet’s Details (1) 
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Chauvenet’s Criterion—Details (2) 
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Chauvenet’s 

Criterion—

Details (3) 
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Chauvenet’s 

Criterion—

Example 2 
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Summary of Probability Theory 
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Summary of 

Probability 

Theory-I 
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Summary of 

Probability 

Theory-II 
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Summary of Probability Theory-III 
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Summary of Probability Theory-IV 


