
Class Notes 3, Phyx 2110

Drag Forces

I. THE IMPORTANCE OF DRAG FORCES

In introductory discussions of an object moving
through the Earth’s atmosphere, the resistance of the
air on the motion of the object is usually neglected. The
main reason for this neglect is that the equation of mo-
tion for the object (Newton’s second law) is then fairly
simple,

m~a = −mg ŷ. (1)

This equation of motion includes only the gravitational
force (magnitude = mg). Because of the simplicity of
Eq. (1), one can exactly solve for the position ~r (t) and
velocity ~v (t) of the object. As it turns out, the path of an
object subject to this equation of motion is a parabola,
as illustrated in Fig. 1. The solid curve in Fig. 1 is the
path that a baseball would take if it left Sammy Sosa’s
bat with an initial speed of 150 mi/hr at an initial angle
of 45 degrees with respect to the horizontal. Notice that
the ball is calculated to travel a distance of 1600 feet!
Even Sammy would have a difficult time actually hitting
a baseball such a distance!

What’s wrong with the calculation? As you have prob-
ably guessed, the neglect of air resistance results in a sig-
nificant overestimation of the distance the baseball trav-
els. If the appropriate force due to air resistance is in-
cluded in the calculation of the flight of the baseball, then
the dashed curve in Fig. 1 results. The result is still quite
a long home run (or long foul ball), but we now have a
realistic distance (500 ft) for one of Sammy’s hits. Drag
forces, of which air resistance is one example, are gen-
erally important when a solid object moves through a
fluid, either a liquid or gas. Other examples include a
bicyclist riding a bike, a boat moving through water, or
the analytical technique of electrophoresis.

Here we discuss two equations that are often used to
describe drag forces. Keep in mind that the equations for
these forces are not exact in the sense that, for example,
Newton’s law of gravitational force is. This is because
they describe, with only a few parameters, the interaction
of atoms at the rather complicated interface between the
solid and the fluid. Still, the equations are quite useful
in a variety of circumstances.

II. LOW VELOCITY, HIGH VISCOSITY

Let’s now consider an object moving at relatively slow
velocity (slow will be defined later) through a fairly vis-
cous (think sticky!) medium. A good example might be
a small metallic sphere, such as a BB, moving through
molasses. For the moment we will neglect gravity and
assume that the object is subject only to the drag force.

A good approximation to the drag force (of the viscous
medium) on the solid object is

~F1 = −K1~v = −K1v v̂. (2)

Here K1 is a positive constant that depends upon both
the object and the fluid through which it moves. What
does this equation tell us? It simply says that the drag
force F1 is proportional to the velocity and that the force
points in the direction opposite to the velocity, so that the
force always opposes the motion of the object. (Recall
that v̂ is a unit vector in the direction of the velocity.)

This equation for the force is most ideally suited to
describing an object with circular cross section moving
through the medium. For such an object the constant
K1 is equal to

K1 = C1πaη, (3)

where C1 is another constant, a is the radius of the object
(perpendicular to the direction of motion) and η is the
viscosity of the medium. (The units of viscosity are kg
m−1 s−1 or equivalently N s m−2.) For a sphere C1 = 6.
Equation (3) explicitly shows how the drag force depends
on the size of the object and the medium through which
it moves. For objects that are not circular in cross sec-
tion Eq. (3) can still be used to good approximation.
However, the parameter a will instead be some distance
roughly half the size of the object.

III. HIGH VELOCITY, LOW VISCOSITY

Another situation commonly encountered is an object
moving fairly fast through a low-viscosity medium. The
drag force then takes a form different than Eq. (2). An
example of such motion is a baseball moving through the
air. In this case the drag force is better represented as

~F2 = −1
2
K2v

2 v̂, (4)

where K2 is a positive constant that again depends upon
properties of the solid object and the fluid. This equation
says that the drag force is again opposite to the direction
of the velocity, but this time the force is proportional
to the square of the velocity, as opposed to being linear
in the velocity. In this case the constant K2 is usually
expressed as

K2 = CDSρ. (5)

The parameter CD is known as the drag coefficient
and is typically close to 0.5, but it does depend upon the
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Figure 1.  Flights of baseballs hit by Sammy Sosa, first without air resistance (solid line) and 
with air resistance (dotted line).  

exact shape of the object. The parameter S is the cross-
sectional area (perpendicular to the direction of travel)
of the object (units = m2), and ρ is the density (kg/m3)
of the medium. For an object with circular cross section
(such as a sphere) Eq. (5) can be written as

K2 = CDπa2ρ, (6)

where a is the radius of the cross section.
Equation (4) with K2 given by Eq. (6) was used to

describe the drag force in the more realistic calculation
of the baseball flight shown in Fig. 1.

IV. SO WHICH DRAG FORCE SHOULD I USE?

Because all normal fluids have both density and vis-
cosity, both types of drag force act on any object moving
through a fluid. However, in many cases we only have to
use one of the forces to describe the drag. To see how
this works we have made several graphs of the magnitude
of each force vs the speed v of an object, shown in Fig. 2.
Notice that for very low velocities (part (a) of the figure
– check the x-axis scale) the linear v drag force (solid
line) is much larger than the quadratic v force (dotted
line), but at very large velocities the v2 force becomes
significantly larger than linear v force, as shown in part
(c). However, there is always one speed where the two
forces are equal. From Eqs. (2) and (4) it can be shown
the two forces are equal at a speed of

vcross =
2K1

K2
, (7)

which is known as the crossover speed.
If we use Eqs. (3) and (6) for K1 and K2 in (7) then

for a sphere we can express the crossover speed as

vcross =
12η

CDaρ
. (8)

So, if the speed of the object is much greater than vcross,
then ~F2 can be used to describe the drag; if the speed is
much less than vcross, then ~F1 can be used. However, if
the velocity v is close to vcross, then the sum ~F1+ ~F2 must
be used to accurately describe the drag on the object.

For one of your homework problems you will show for
a baseball moving through air that the crossover speed is
much less than any typical speed important to the game
of baseball. Thus the v2 force can be used to describe
the drag on the home-run balls that come off of Sammy’s
bat.

V. GRAVITY AND DRAG FORCES

Let’s now consider the case (as in the lab with the
falling coffee filter) where an object is moving only in the
vertical direction, subject to both the force of gravity
and an appropriate drag force. If we release the object
from rest then initially the only force on it is that due to
gravity. However, as the object speeds up the drag force
increases (from zero) until its magnitude equals the force
due to gravity. Because the gravitational and drag forces
point in opposite directions, the net force on the object is
zero. Thus the object no longer accelerates (its velocity
remains constant), and it falls at a constant rate. This is
the condition of terminal velocity

Setting the force of gravity equal to the drag force (in
the general case where we must include both kinds of drag
forces) gives us an equation that determines the terminal
velocity vterm of a freely falling object,

mg = K1vterm +
1
2
K2v

2
term. (9)
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Figure 2.  F1(v) (solid line) and F2(v) (dotted line) 
vs speed v.  Here K1 = 1 N s/m and K2 = 1 N 
(s/m)2.  The two forces are equal at the crossover 
velocity vcross = 2 m/s.   

 
 

If the object is a sphere, then we can use Eqs. (3) and
(6) and substitute for K1 and K2 in Eq. (9), which yields

mg = 6πη(avterm) +
π

2
CDρ(avterm)2. (10)

As discussed above, however, we often only need to
include one of the drag force terms. For example, if the
linear v drag force is the important drag force, then the
second term on the right-hand-side of Eq. (9) can be
neglected. Solving Eq. (9) for the terminal velocity then
results in

vterm =
mg

K1
. (11)

If the v2 drag force is the dominant drag force, then the
first term on the right-hand-side of Eq. (9) can be ne-
glected, resulting in

vterm =
√

2mg

K2
. (12)

VI. ELECTROPHORESIS

The technique of electrophoresis is often used to iden-
tify proteins or DNA sequences. The basis for this tech-
nique lies in the difference in drag force that different
molecules undergo in a fluid. In the technique the sample
under investigation (a particular protein, say) is placed
at one end of the electrophoresis cell, which contains the
medium that provides the drag force. An electric field is
applied that quickly accelerates the (charged) molecules
to terminal velocity. For a molecule with charge q (unit
= Coulomb = C) the electric force on the molecule is
given by

~Felec = q ~E, (13)

where ~E is the electric field (units = N C−1). So instead
of gravity and the drag force balancing it is now the elec-
tric force and the drag force that balance each other.
The terminal velocity depends on the size (and thus the
molecular weight) of the molecule. The molecules are
allowed to drift for a certain amount of time. From the
distance that they travel during that time their molecular
weight can then be identified.


