
1 Quantization of the Klein-Gordon (scalar) field
We develop the Hamiltonian formulation, then canonically quantize.

1.1 The conjugate momentum
To begin quantization, we require the Hamiltonian formulation of scalar field theory. Beginning with the
Lagrangian,

L =
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d3x

the only modification to the definition of the conjugate momentum as

p =
∂L

∂ẋ

is the recognition that (a) the independent variable is dependent on four parameters ϕ = ϕ (xα) instead of
just one, and (b) the Lagrangian is now a functional, Eq.(??). Just as the time derivative must be changed
from a total to a partial derivative,

ẋ =
dx

dt
=⇒ ϕ̇ =

∂ϕ

∂t

the derivative of the Lagrangian must go to a functional derivative of the Lagrangian

∂L

∂ẋ
=⇒ δL

δϕ̇

Writing π (yµ) = π (y), the conjugate momentum is therefore,

π (y) ≡ δL [x]

δ (∂0ϕ (y))

=
δ

δ (∂0ϕ (y))

1

2

ˆ (
∂αϕ (x) ∂αϕ (x)−m2ϕ2 (x)

)
d3x

=

ˆ
∂0ϕ (x) δ3 (y − x) d3x′

= ∂0ϕ (t,y)

Notice that we treat ϕ (x) and its derivatives ∂αϕ (x) as independent. In terms of the momentum density,
the action and Lagrangian density are

S =
1

2

ˆ (
π2 −∇ϕ ·∇ϕ−m2ϕ2

)
d4x (1)

L =
1

2

(
π2 −∇ϕ ·∇ϕ−m2ϕ2

)
(2)

1.2 The Hamiltonian and Poisson brackets
We must also generalize the expression for the Hamiltonian. For the infinite number of field degrees of
freedom (labeled by the spatial coordinates x), the sum in the expression for the Hamiltonian becomes an
integral, so that H =

∑
piq̇

i − L generalizes to

H =

ˆ
π (x, t) ϕ̇ (x, t) d3x− L (3)
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Therefore,

H =

ˆ
π(x)ϕ̇(x)d3x− 1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d3x

=
1

2

ˆ (
π2 + ∇ϕ ·∇ϕ+m2ϕ2

)
d3x (4)

We can define the Hamiltonian density,

H =
1

2

(
π2 + ∇ϕ ·∇ϕ+m2ϕ2

)
(5)

Hamilton’s equations can also be expressed in terms of densities. Starting from Hamilton’s equations in
the familiar form,

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

we replace
(
qi, pj

)
with (ϕ, π) and since the Hamiltonian is a functional, replace the partial derivative with

functional derivatives,

ϕ̇ (x) =
δH

δπ (x)
(6)

π̇ (x) = − δH

δϕ (x)
(7)

and check that our procedure reproduces the correct field equation by taking the indicated derivatives.
Carrying out the functional derivative for ϕ̇,

ϕ̇(x) =
δH

δπi (x)

=
1

2

δ

δπi (x)

ˆ (
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
d3y

=
1

2

ˆ (
2π (y)

δπ (y)

δπ (x)

)
d3y

=

ˆ
π (y) δ3 (x− y) d3y

= π (x)

This agrees with our definition of π (x). For π we find

π̇ (x) = − δH

δϕ (x)

= −1

2

δ

δϕ(x)

ˆ (
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
d3y

= −
ˆ (
∇ϕ · ∇δϕ (y)

δϕ (x)
+m2ϕ

δϕ (y)

δϕ (x)

)
d3y

=

ˆ (
∇2ϕ · δϕ (y)

δϕ (x)
−m2ϕ

δϕ (y)

δϕ (x)

)
d3y

=

ˆ (
∇2ϕδ3 (y − x)−m2ϕδ3 (y − x)

)
d3y

= ∇2ϕ (x)−m2ϕ (x)
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But π̇ = ∂0π = ∂0∂
0ϕ so

�ϕ = −m2ϕ

and we recover the Klein-Gordon field equation.
We move toward quantization by writing the field equations in terms of functional Poisson brackets. Let

{f (ϕ, π) , g (ϕ, π)} ≡
ˆ (

δf

δπ (x)

δg

δϕ (x)
− δf

δϕ (x)

δg

δπ (x)

)
d3x (8)

where we replace the sum over all pi and qi by an integral over x, and where f (ϕ, π) = f (ϕ (y, t) , π (y, t))
and g (ϕ, π) = g (ϕ (z, t) , π (z, t)). The bracket is evaluated at a constant time. Then we have

{π (y, t) , ϕ (z, t)} =

ˆ (
δπ (y, t)

δπ(x)

δϕ (z, t)

δϕ(x)
− δπ (y, t)

δϕ(x)

δϕ (z, t)

δπ(x)

)
d3x

=

ˆ
δ3 (y − x) δ3 (z− x) d3x

= δ3 (z− y)

while
{π (y, t) , π (z, t)} = {ϕ (y, t) , ϕ (z, t)} = 0

Hamilton’s equations work out correctly:

ϕ̇(x) = {H(ϕ, π), ϕ(x′)}

=

ˆ (
δH(ϕ, π)

δπ(x)

δϕ(x′)

δϕ(x)
− δH

δϕ(x)

δϕ(x′)

δπ(x)

)
d3x

=

ˆ
δH(ϕ, π)

δπ(x)
δ3(x− x′)d3x

=
δH(ϕ(x), π(x))

δπ(x)

and

π̇(x) = {H(ϕ, π), π(x′)}

=

ˆ (
δH(ϕ, π)

δπ(x)

δπ(x′)

δϕ(x)
− δH

δϕ(x)

δπ(x′)

δπ(x)

)
d3x

= −
ˆ
δH(ϕ, π)

δϕ(x)
δ3(x− x′)d3x

= −δH(ϕ(x), π(x))

δϕ(x)

Now we quantize, canonically. The field and its conjugate momentum become operators and the funda-
mental Poisson brackets become commutators:

{π(x′), ϕ(x′′)} = δ3(x′′ − x′)⇒ [π̂(x′), ϕ̂(x′′)] = iδ3(x′′ − x′)

(where h = 1) while
[ϕ̂(x′), ϕ̂(x′′)] = [π̂(x′), π̂( x′′)] = 0

These are the fundamental commutation relations of the quantum field theory. Because the commutator of
the field operators π̂(x) and ϕ̂(x) are evaluated at the same value of t, these are called equal time commutation
relations. More explicitly,

[π̂(x′, t), ϕ̂(x′′, t)] = iδ3(x′′ − x′)

[ϕ̂(x′, t), ϕ̂(x′′, t)] = [π̂(x′, t), π̂(x′′, t)] = 0 (9)

This completes the canonical quantization. The trick, of course, is to characterize the states these operators
act on.
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1.3 Solution for the free classical Klein-Gordon field
Having written commutation relations for the field, we still have the problem of finding solutions and inter-
preting them. To begin, we look at solutions the classical theory. The field equation

�ϕ = −m
2

~2
ϕ

(where we keep h, but set c = 1) is not hard to solve. Consider plane waves,

ϕ(x, t) = Ae
i
~ (pαx

α) +A†e−
i
~ (pαx

α)

= Ae
i
~ (Et−p·x) +A†e−

i
~ (Et−p·x)

Substituting into the field equation we have

A

(
i

~

)2

pαp
α exp

i

~
(pαx

α) = −m
2

~2
A exp

i

~
(pαx

α)

so we need the usual mass-energy-momentum relation:

pαp
α = m2

We can solve this for the energy,

E+ =
√
p2 +m2

E− = −
√
p2 +m2

then construct the general solution by Fourier superposition. To keep the result manifestly relativistic, we
use a Dirac delta function to impose the energy condition, pαpα = m2. We also insert a unit step function,
Θ(E), to insure positivity of the energy. This insertion may seem a bit ad hoc, and it is – we will save
discussion of the negative energy solutions and antiparticles for the last section of this chapter. Then,

ϕ(x, t) =
1

(2π)
3/2

ˆ √
2E
(
a(E,p)e

i
~ (pαx

α) + a†(E,p)e−
i
~ (pαx

α)
)

×δ
(
pαp

α −m2
)

Θ(E)~−4d4p (10)

where A =
√

2Ea(E,p) is the arbitrary complex amplitude of each wave mode and 1
(2π)3/2

is the conventional
normalization for Fourier integrals.

Recall that for a function f (x) with zeros at xi, i = 1, 2, . . . , n, δ (f) gives a contribution at each zero:

δ (f) =

n∑
i=1

1

|f ′ (xi) |
δ (x− xi) (11)

so the quadratic delta function can be written as

δ
(
pαp

α −m2
)

= δ
(
E2 − p2 −m2

)
=

1

2 |E|
δ
(
E −

√
p2 +m2

)
+

1

2 |E|
δ
(
E +

√
p2 +m2

)
Exercise: Prove eq.(11).

Exercise: Argue that Θ(E) is Lorentz invariant.
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The integral for the solution ϕ(x, t) becomes

ϕ(x, t) =
1

(2π)
3/2

ˆ √
2E

{(
ae

i
~ (pαx

α) + a†e−
i
~ (pαx

α)
) 1

2|E|
δ
(
E −

√
p2 +m2

)
+
(
ae

i
~ (pαx

α) + a†e−
i
~ (pαx

α)
) 1

2|E|
δ
(
E +

√
p2 +m2

)}
Θ(E)~−4d4p

=
1

(2π)
3/2

ˆ (
ae

i
~ (pαx

α) + a†e−
i
~ (pαx

α)
) 1√

2|E|
δ
(
E −

√
p2 +m2

)
~−4d4p

Define the wave vector kµ,

kµ = (ω,k)

k =
p

~

ω = +
1

~
√

p2 +m2 = +

√
k2 +

(m
~

)2
Then integrating over the energy delta function,

ϕ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
a (k) ei(ωt−k·x) + a† (k) e−i(ωt−k·x)

)
(12)

This is the general classical solution for the Klein-Gordon field. Notice that since ω = ω(k), the amplitudes
a and a† depend only on k. We also need the conjugate momentum,

π (x, t) = ∂0ϕ (x, t)

=
i

(2π)
3/2

ˆ
d3k

√
ω

2

(
a (k) ei(ωt−k·x) − a† (k) e−i(ωt−k·x)

)
(13)

To check that our solution satisfies the Klein-Gordon equation, we need only apply the wave operator
to the right side. This pulls down an overall factor of (ikµ)(ikµ) = − 1

~2

(
E2 − p2

)
= −m

2

~2 . Since this is
constant, it comes out of the integral, giving −m

2

~2 ϕ as required.

1.4 Quantization of the mode amplitudes
Now we need to quantize the classical solution. We know the fundamental commutation relations that ϕ̂ and
π̂ satisfy, Eqs.(9) as operators, but we need to see the effect this has on the right hand side of the solution,
Eq.(12). To do this, we first invert the classical Fourier integrals to solve for the coefficients in terms of the
fields. To this end, multiply ϕ(x, t) by 1

(2π)3/2
d3xeik

′·x and integrate. It proves sufficient to evaluate the
expression at t = 0.

1

(2π)
3/2

ˆ
ϕ (x, 0) eik

′·xd3x =
1

(2π)
3

ˆ ˆ
d3xd3k√

2ω

(
a (k) ei(k

′−k)·x + a† (k) ei(k
′+k)·x

)
=

1

(2π)
3

ˆ
d3k√

2ω

(
a (k) (2π)

3
δ3 (k′ − k) + a† (k) (2π)

3
δ3 (k′ + k)

)
=

1√
2ω′

(
a (k′) + a† (−k′)

)
(14)

where we have used the Fourier representation of the Dirac delta function

1

(2π)
3

ˆ
d3x eik·x = δ3(k)
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Once again taking the Fourier transform, 1
(2π)3/2

´
π (x, 0) eik

′·xd3x, of the momentum density, we find it
equal to

1

(2π)
3/2

ˆ
π (x, 0) eik

′·xd3x =
i

(2π)
3

ˆ
d3x

ˆ
d3k

√
ω

2

(
a (k) ei(k

′−k)·x − a† (k) ei(k
′+k)·x

)
= i

ˆ
d3k

√
ω

2

(
a (k) δ3 (k′ − k)− a† (k) δ3 (k′ + k)

)
= i

√
ω′

2

(
a(k′)− a† (−k′)

)
(15)

These results combine to solve for the amplitudes. Adding
√

2ω′ times Eq.(14) to −i
√

2
ω′ times (13) gives

a (k′) :(
a (k′) + a† (−k′)

)
+
(
a(k′)− a† (−k′)

)
=

√
2ω′

(2π)
3/2

ˆ
ϕ (x, 0) eik

′·xd3x− i

(2π)
3/2

√
2

ω′

ˆ
π (x, 0) eik

′·xd3x

Simplifying, we have solve for the mode amplitudes,

a (k′) =

√
2ω′

2 (2π)
3/2

ˆ (
ϕ (x, 0)− i

ω′
π (x, 0)

)
eik

′·xd3x (16)

The difference of the same combination and replacing k′ → −k′ gives the adjoint mode amplitudes,

a† (k′) =

√
2ω′

2 (2π)
3/2

ˆ (
ϕ (x, 0) +

i

ω′
π (x, 0)

)
e−ik

′·xd3x (17)

This gives the amplitudes in terms of the field and its conjugate momentum. So far, this result is classical.
Now we quantize the amplitudes by replacing ϕ and π by the operators, ϕ̂ and π̂. Clearly, once ϕ and π

become operators, the amplitudes must too; there is no other field present that could become an operator
instead. Dropping the primes,

â (k) =

√
2ω

2 (2π)
3/2

ˆ (
ϕ̂ (x, 0)− i

ω′
π̂ (x, 0)

)
eik·xd3x (18)

â† (k) =

√
2ω

2 (2π)
3/2

ˆ (
ϕ̂ (x, 0) +

i

ω′
π̂ (x, 0)

)
e−ik·xd3x (19)

From the commutation relations for ϕ and π we can compute those for a and a†.[
â (k) , â† (k′)

]
=

√
ωω′

2 (2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′

[
ϕ̂ (x, 0)− i

ω
π̂ (x, 0) , ϕ̂ (x′, 0) +

i

ω′
π̂ (x′, 0)

]
=

√
ωω′

2 (2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′

(
i

ω′
[ϕ̂ (x, 0) , π̂ (x′, 0)]− i

ω
[π̂ (x, 0) , ϕ̂ (x′, 0)]

)
=

√
ωω′

2 (2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′

(
2

ω′
δ3 (x− x′)

)
The Dirac delta function allows us to evaluate the integrals,[

â (k) , â† (k′)
]

=

√
ω

ω′
1

(2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′δ3 (x− x′)

=

√
ω

ω′
1

(2π)
3

ˆ
ei(k−k

′)·xd3x

= δ3 (k− k′)
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Notice that the delta function makes ω = ω′.

Exercise: Show that [â(k), â(k′)] = 0.

Exercise: Show that
[
â†(k), â†(k′)

]
= 0.

Finally, we summarize by the field and momentum density operators in terms of the mode amplitude oper-
ators:

ϕ̂ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
â (k) ei(ωt−k·x) + â† (k) e−i(ωt−k·x)

)
(20)

π̂ (x, t) =
i

(2π)
3/2

ˆ
d3k

√
ω

2

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)
(21)

Next, we turn to a study of states. To begin, we require the Hamiltonian operator, which requires a bit
of calculation.

1.5 Calculation of the Hamiltonian operator
This is our first typical quantum field theory calculation. They’re a bit tricky to keep track of, but not really
that hard. Our goal is to compute the expression for the Hamiltonian operator

Ĥ ≡ ~
2

ˆ (
π̂2 + ∇ϕ̂ ·∇ϕ̂+m2ϕ̂2

)
d3x (22)

in terms of the mode operators. Because the techniques involved are used frequently in field theory calcula-
tions, we include all the gory details.

Let’s consider one term at a time. For the first,

Iπ =
~
2

ˆ
π̂2d3x

=
~
2

ˆ
d3x

[
i

(2π)
3/2

ˆ
d3k

√
ω

2

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)
× i

(2π)
3/2

ˆ
d3k′

√
ω′

2

(
â (k′) ei(ω

′t−k′·x) − â† (k′) e−i(ω
′t−k′·x)

)]

= −1

4

~
(2π)

3

ˆ
d3x

ˆ
d3k

ˆ
d3k′
√
ωω′

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) − â† (k′) e−i(ω
′t−k′·x)

)
= −1

4

~
(2π)

3

ˆ
d3x

ˆ
d3k

ˆ
d3k′
√
ωω′

[
â (k) â (k′) ei((ω+ω

′)t−(k+k′)·x) − â (k) â† (k′) ei((ω−ω
′)t−(k−k′)·x)

−â† (k) â (k′) e−i((ω−ω
′)t−(k−k′)·x) + â† (k) â† (k′) e−i((ω+ω

′)t−(k+k′)·x)
]

The integral over d3x, produces Dirac delta functions, which we integrate immediately:

Iπ = −~
4

ˆ
d3k

ˆ
d3k′
√
ωω′

[
â (k) â (k′) δ3 (k + k′) ei(ω+ω

′)t − â (k) â† (k′) δ3 (k− k′) ei(ω−ω
′)t

−â† (k) â (k′) δ3 (k− k′) e−i(ω−ω
′)t + â† (k) â† (k′) δ3 (k + k′) e−i(ω+ω

′)t
]

= −~
4

ˆ
d3k ω

[
â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k) + â† (k) â† (−k) e−2iωt

]
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We follow the same steps for the remaining two terms in the Hamiltonian. Inserting the gradient of
Eq.(20), the second term becomes

I∇ϕ =
~
2

ˆ
∇ϕ̂ ·∇ϕ̂d3x

=
~
2

1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
(−ik) · (−ik′)

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) − â† (k′) e−i(ω
′t−k′·x)

)
= −~

2

1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
k · k′

[(
â (k) â (k′) ei((ω+ω

′)t−(k+k′)·x) − â (k) â† (k′) ei((ω−ω
′)t−(k−k′)·x)

)
−â† (k) â (k′) e−i((ω−ω

′)t−(k−k′)·x) + â† (k) â† (k′) e−i((ω+ω
′)t−(k+k′)·x)

]
= −~

2

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
k · k′

[(
â (k) â (k′) δ3 (k + k′) ei(ω+ω

′)t − â (k) â† (k′) δ3 (k− k′) ei(ω−ω
′)t
)

−â† (k) â (k′) δ3 (k− k′) e−i(ω−ω
′)t + â† (k) â† (k′) δ3 (k + k′) e−i(ω+ω

′)t
]

= −~
4

ˆ
d3k

k2

ω

[
−â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k)− â† (k) â† (−k) e−2iωt

]
As before, the d3x integrals of the four terms give four Dirac delta functions and the d3k′ integrals become
trivial. It is not hard to see the pattern that is emerging. The k·k

ω term will combine nicely with the ω from
the π̂2 integral and a corresponding m2 term from the final integral to give a cancellation. The crucial thing
is to keep track of the signs.

The third and final term is

Im =
~
2

ˆ
m2ϕ̂2d3x

=
~
2

1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
m2
(
â (k) ei(ωt−k·x) + â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) + â† (k′) e−i(ω
′t−k′·x)

)
=

~
2

1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
m2
[(
â (k) â (k′) ei((ω+ω

′)t−(k+k′)·x) + â (k) â† (k′) ei((ω−ω
′)t−(k−k′)·x)

)
+â† (k) â (k′) e−i((ω−ω

′)t−(k−k′)·x) + â† (k) â† (k′) e−i((ω+ω
′)t−(k+k′)·x)

]
=

~
2

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
m2
[(
â (k) â (k′) δ3 (k + k′) ei(ω+ω

′)t + â (k) â† (k′) δ3 (k− k′) ei(ω−ω
′)t
)

+â† (k) â (k′) δ3 (k− k′) e−i(ω−ω
′)t + â† (k) â† (k′) δ3 (k + k′) e−i(ω+ω

′)t
]

=
~
4

ˆ
d3k

m2

ω

[
â (k) â (−k) e2iωt + â (k) â† (k) + â† (k) â (k) + â† (k) â† (−k) e−2iωt

]
Now we can combine all three terms:

Ĥ ≡ ~
2

ˆ (
π̂2 + ∇ϕ̂ ·∇ϕ̂+m2ϕ̂2

)
d3x

= Iπ + IOϕ + Im

= −~
4

ˆ
d3k ω

[
â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k) + â† (k) â† (−k) e−2iωt

]
−~

4

ˆ
d3k

k2

ω

[
−â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k)− â† (k) â† (−k) e−2iωt

]
+
~
4

ˆ
d3k

m2

ω

[
â (k) â (−k) e2iωt + â (k) â† (k) + â† (k) â (k) + â† (k) â† (−k) e−2iωt

]
8



= −~
4

ˆ
d3k

(
ω − k2

ω
− m2

ω

)
â (k) â (−k) e2iωt − ~

4

ˆ
d3k

(
−ω − k2

ω
− m2

ω

)
â (k) â† (k)

−~
4

ˆ
d3k

(
−ω − k2

ω
− m2

ω

)
â† (k) â (k)− ~

4

ˆ
d3k

(
ω − k2

ω
− m2

ω

)
â† (k) â† (−k) e−2iωt

Since
ω2 − k2 = m2

the Hamiltonian becomes

Ĥ = −~
4

ˆ
d3k (−2ω) â (k) â† (k)− ~

4

ˆ
d3k (−2ω) â† (k) â (k)

=
1

2

ˆ
d3k ~ω

(
â (k) â† (k) + â† (k) â (k)

)
If we commute â (k) and â† (k) in the first term on the right, we encounter a problem:

Ĥ =
1

2

ˆ
d3k ~ω

(
â† (k) â (k) + â† (k) â (k) + δ3 (k− k)

)
=

ˆ
d3k ~ω

(
â† (k) â (k) +

1

2
δ3 (k− k)

)
This is very close to a sensible result, but the constant term is problematic.

1.6 Our first infinity
The form of the Hamiltonian found above displays an obvious problem – the final term,

1

2

ˆ
d3k ~ωδ3 (0)

diverges in several ways. Most obviously, the triple Dirac delta function is evaluated at 0 and therefore
diverges. Even if it were not present, the remaining integral,

´
d3k ω, itself diverges.

While the constant “ground state energy” of the harmonic oscillator, 1
2hω, causes no probem in quantum

mechanics, the presence of such an energy term for each mode of quantum field theory leads to an infinite
energy for the vacuum state. Fortunately, a simple trick allows us to eliminate this divergence throughout
our calculations. To see how it works, notice that anytime we have a product of two or more fields at the
same point, we develop some terms of the general form

ϕ̂ (x) ϕ̂ (x) ∼ â (ω,k) â† (ω,k) + . . .

which have â† (ω,k) to the right of â (ω,k). When such products act on the vacuum state, the â†(ω,k) gives
a nonvanishing contribution, and if we sum over all wave vectors we get a divergence. The solution is simply
to impose a rule that changes the order of the creation and annihilation operators. This is called normal
ordering, and is denoted by enclosing the product in colons. Thus, we define

: â (ω,k) â† (ω,k) : ≡ â† (ω,k) â (ω,k)

and more generally, normal ordering requires us to place all creation operators to the left of anihilation
operators. There is always an ordering ambituity when building functions of ϕ̂ and π̂, since these do not
commute. We resolve the ordering ambiguity by writing the function in terms of â (ω,k) and â† (ω,k) and
normal ordering,

f (ϕ, π) ⇒ : f (ϕ̂, π̂) :

9



Applied to the Hamiltonian, we define

Ĥ =
~
2

ˆ
:
(
π̂2 + ∇ϕ̂ ·∇ϕ̂+m2ϕ̂2

)
: d3x

=
1

2

ˆ
d3k ~ω :

(
â (k) â† (k) + â† (k) â (k)

)
:

and this results in

Ĥ =

ˆ
d3k ~ωâ† (k) â (k) (23)

This expression gives zero for the vacuum state, and is finite for all states with a finite number of particles.
While this procedure may seem a bit ad hoc, recall that the ordering of operators in any quantum expression
is one thing that cannot be determined from the classical framework using canonical quantization. It is
therefore reasonable to use whatever ordering convention gives the most sensible results.

1.7 States of the Klein-Gordon field
The similarity between the field Hamiltonian and the harmonic oscillator makes it easy to interpret this
result. We begin the observation that the expectation values of Ĥ are bounded below. This follows because
for any normalized state |α〉 we have

〈α| Ĥ |α〉 = 〈α|
ˆ
d3k ~ωâ† (k) â (k) |α〉

=

ˆ
d3k ~ω

(
〈α| â† (k)

)
(â(k) |α〉)

This is positive definite, since if we let |β〉 = â(k) |α〉 , then 〈β| = 〈α| â†(k), so

〈α| Ĥ |α〉 =

ˆ
d3k ~ω 〈α| â†(k)â(k) |α〉

=

ˆ
d3k ~ω 〈β|β〉

> 0

since the integrand is positive definite. However, we can show that the action of â (k) lowers the eigenvalues
of Ĥ. Consider the commutator of â (k) with the Hamiltonian,[

Ĥ, â (k)
]

=

[ˆ
d3k′~ω′â† (k′) â (k′) , â (k)

]
=

ˆ
d3k′~ω′

[
â† (k′) , â (k)

]
â (k′)

= −
ˆ
d3k′~ω′δ3 (k− k′) â (k′)

= −~ω â (k)

Therefore, if |α〉 is an eigenstate of Ĥ with Ĥ |α〉 = α |α〉 then so is â(k) |α〉 because

Ĥ (â (k) |α〉) =
[
Ĥ, â (k)

]
|α〉+ â (k) Ĥ |α〉

= −~ωâ (k) |α〉+ â (k)α |α〉
= (α− ~ω) (â (k) |α〉)
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Moreover, the eigenvalue of the new eigenstate is lower than α. Since the eigenvalues are bounded below,
there must exist a state such that

â (k) |0〉 = 0 (24)

for all values of k. The state |0〉 is called the vacuum state and the operators â (k) are called annihilation
operators. From the vacuum state, we can construct the entire spectrum of eigenstates of the Hamiltonian.
First, notice that the vacuum state is a minimal eigenstate of Ĥ:

Ĥ |0〉 =

ˆ
d3k′~ω′â† (k′) â (k′) |0〉

= 0

Now, we act on the vacuum state with â†(k) to produce new eigenstates.

Exercise: Prove that |k〉 = â†(k) |0〉 is an eigenstate of Ĥ with energy eigenvalue ~ω.

We can build infinitely many states in two ways. First, just like the harmonic oscillator states, we can apply
the creation operator â†(k) as many times as we like. Such a state contains multiple particles with energy
~ω. Second, we can apply creation operators of different k:

|k′,k〉 = â†(k′)â†(k) |0〉 = â†(k)â†(k′) |0〉

This state contains two particles, one with energy ~ω and the other with energy ~ω′.
As with the harmonic oscillator, we can introduce a number operator to measure the number of quanta

in a given state. The number operator is just the sum over all modes of the number operator for a given
mode:

N̂ =

ˆ
:
(
â†(k)â(k)

)
: d3k

=

ˆ
â†(k)â(k)d3k

Exercise: By applying N̂ , compute the number of particles in the state

|k′,k〉 = â†(k′)â†(k) |0〉

Notice that creation and annihilation operators for different modes all commute with one another, e.g.,[
â†(k′), â(k)

]
= 0

when k′ 6= k.

1.8 Poincaré transformations of Klein-Gordon fields
Now let’s examine the Lorentz transformation and translation properties of scalar fields. For this we need
to construct quantum operators which generate the required transformations. Since the translations are the
simplest, we begin with them.

We have observed that the spacetime translation generators forming a basis for the Lie algebra of trans-
lations (and part of the basis of the Poincaré Lie algebra) resemble the energy and momentum operators of
quantum mechanics. Moreover, Noether’s theorem tells us that energy and momentum are conserved as a
result of translation symmetry of the action. We now need to bring these insights into the realm of quantum
fields.
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From our discussion in Chapter 1, using the Klein-Gordon Lagrangian density from eq.(2), we have the
conserved stress-energy tensor,

Tµν =
∂L

∂ (∂µφ)
∂νφ− Lηµν

= ∂µϕ∂νϕ− 1

2
ηµν

(
π2 −∇ϕ · ∇ϕ−m2ϕ2

)
which leads to the conserved charges,

Pµ =

ˆ
Tµ0d3x

and the natural extension of this observation is to simply replace the products of fields in Tµ0 with normal-
ordered field operators. We therefore write

P̂µ ≡
ˆ

: T̂µ0 : d3x

First, for the time component,

P̂ 0 =

ˆ
: T̂ 00 : d3x

=

ˆ
: ∂0ϕ̂∂0ϕ̂− 1

2
η00
(
π̂2 −∇ϕ̂ · ϕ̂−m2ϕ̂2

)
: d3x

=
1

2

ˆ
: π̂2 +∇ϕ̂ · ∇ϕ̂+m2ϕ̂2 : d3x

= Ĥ

This is promising!
Now consider the momentum operators:

P̂ i ≡
ˆ

: T̂ i0 : d3x

=

ˆ
: ∂iϕ̂∂0ϕ̂− 1

2
ηi0
(
π̂2 −∇ϕ̂ · ϕ̂−m2ϕ̂2

)
: d3x

=

ˆ
: ∂iϕ̂ π̂ : d3x

P̂ =

ˆ
: ∇ϕ̂ π̂ : d3x

Exercise: By substituting the field operators, eq.(20) and eq.(21), into the integral for P̂ i, show that

P̂ =
1

2

ˆ
~k
[
−â(k)â(−k)e2iωt + â(k)â†(k) + â†(k)â(k)− â†(k)â†(−k)e−2iωt

]
d3k

The calculation is similar to the computation of the Hamiltonian operator above, except there is only
one term to consider.

We can simplify this result for P̂ using a parity argument. Consider the effect of parity on the first integral.
Since the volume form together with the limits is invariant under k→ −k,

∞̊

−∞

d3k →
−∞̊

∞

(−1)
3
d3k =

∞̊

−∞

d3k
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and ω (−k) = ω (k) , the first integral satisfies

Î1 =
1

2

ˆ
d3k ~k â(k)â(−k)e2iωt

=
1

2

ˆ
d3k (−~k) â(−k)â(k)e2iωt

= −1

2

ˆ
d3k ~k â(k)â(−k)e2iωt

= −Î1

and therefore Î1 = 0. The final term vanishes in the same way, so the momentum operator reduces to

P̂ =

ˆ
: ∂iϕ̂ π̂ : d3x

=
1

2

ˆ
~k:

(
â(k)â†(k) + â†(k)â(k)

)
: d3k

=

ˆ
~k â(k)â†(k)d3k

Once again, this makes sense; moreover, they are suitable for translation generators since they all commute.
In a similar way, we can compute the operators M̂αβ , and show that the commutation relations of the

full set reproduce the Poincaré Lie algebra,[
M̂αβ , M̂µν

]
= ηβµM̂αν − ηβνM̂αµ − ηαµM̂βν − ηανM̂βµ[

M̂αβ , P̂µ
]

= ηµαP̂ β − ηµβP̂α[
P̂α, P̂ β

]
= 0

The notable accomplishment here is that we have shown that even after quantization, the symmetry algebra
not only survives, but can be built from the quantum field operators. This is far from obvious, because the
commutation relations for the field operators are simply imposed by the rules of canonical quantization and
have nothing to do, a priori, with the commutators of the symmetry algebra. One consequence, as noted
above, is that the Casimir operators of the Poincaré algebra may be used to label quantum states.

2 Quantization of the complex scalar field

2.1 Classical Hamiltonian formulation
The complex scalar field provides a slight generalization of the real scalar field. As before we begin with the
Lagrangian, Eq.(??)

L =

ˆ (
∂αϕ∗∂αϕ−m2ϕ∗ϕ

)
d3x (25)

This has twice the degrees of freedom as the real Klein-Gordon field, and introduces an extra symmetry.
While we could realize the two degrees of freedom by expanding ϕ = ϕR + iϕI , treating ϕ and ϕ∗ as the
independent variables yields the same results.

We define the conjugate momentum densities to each of ϕ and ϕ∗ as the functional derivatives L with
respect to ϕ and ϕ∗ :

π ≡ δL

δ (∂0ϕ)
= ∂0ϕ∗ (x) (26)

and similarly

π∗ ≡ δL

δ (∂0ϕ∗)
= ∂0ϕ (x) (27)
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The action and Lagrangian density, written in terms of these momenta, are therefore

S =

ˆ (
ππ∗ −∇ϕ∗ ·∇ϕ−m2ϕ∗ϕ

)
d4x

L = ππ∗ −∇ϕ∗ ·∇ϕ−m2ϕ∗ϕ

The Hamiltonian is defined as

H ≡
ˆ

(π∂0ϕ+ π∗∂0ϕ
∗) d3x− L

=

ˆ
(ππ∗ + π∗π)−

(
ππ∗ −∇ϕ∗ ·∇ϕ−m2ϕ∗ϕ

)
d3x

and therefore

H =

ˆ (
π∗π + ∇ϕ∗ ·∇ϕ+m2ϕ∗ϕ

)
d3x (28)

Hamilton’s equations are:

ϕ̇ (x) =
δH

δπ (x)

π̇ (x) = − δH

δϕ (x)

ϕ̇∗ (x) =
δH

δπ∗ (x)

π̇∗ (x) = − δH

δϕ∗ (x)

Exercise: Prove that Hamilton’s equations reproduce the field equations for ϕ and ϕ∗.

Now write the field equations in terms of functional Poisson brackets which – remembering to sum the
derivatives over all independent fields – are given for functionals f = f [ϕ, π, ϕ∗, π∗] and g = g [ϕ, π, ϕ∗, π∗]
by

{f, g} ≡
ˆ
d3x

(
δf

δπ(x)

δg

δϕ(x)
+

δf

δπ∗(x)

δg

δϕ∗(x)
− δf

δϕ(x)

δg

δπ(x)
− δf

δϕ∗(x)

δg

δπ∗(x)

)
(29)

The result is the just what we would guess from the real case,

{π (x) , ϕ (y)} =

ˆ (
δπ (x)

δπ (x′)

δϕ (y)

δϕ (x′)
+ 0− δπ (x))

δϕ (x′)

δϕ (y)

δπ (x′)
− 0

)
d3x

=

ˆ
δ3 (x− x′) δ3 (y − x) d3x

= δ3 (x− y)

{π∗ (x) , ϕ∗ (y)} = δ3(x− y)

with all other brackets vanishing.

Exercise: Check that Hamilton’s equations

ϕ̇(x) = {H (ϕ, π, ϕ∗, π∗) , ϕ(x′)}
ϕ̇∗(x) = {H (ϕ, π, ϕ∗, π∗) , ϕ∗(x′)}
π̇(x) = {H (ϕ, π, ϕ∗, π∗) , π(x′)}
π̇∗(x) = {H (ϕ, π, ϕ∗, π∗) , π∗(x′)}

reproduce Hamilton’s equations.
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Now we quantize, replacing fields by operators and Poisson brackets by equal-time commutators:

[π̂ (x, t) , ϕ̂ (y, t)] = i~δ3 (x− y) (30)
[π̂∗ (x, t) , ϕ̂∗ (y, t)] = i~δ3 (x− y) (31)

with all other pairs commuting. Now we seek free field solutions satisfying these quantization relations.

2.2 Mode amplitudes of the complex scalar field
The solution proceeds as before, by starting with solutions for the classical theory. The field equations

�ϕ = −m
2

~2
ϕ

�ϕ∗ = −m
2

~2
ϕ∗

are complex conjugates of each other. The only difference from the real case is that we no longer restrict to
real plane waves. This leaves the amplitudes independent:

ϕ (x, t) = Ae
i
~ (Et−p·x) +B†e−

i
~ (Et−p·x) (32)

Substituting into the field equation we have

�ϕ =

(
i

~

)2

pαp
αAe

i
~ (Et−p·x) +

(
− i
~

)2

pαp
αB†e−

i
~ (Et−p·x)

= − 1

~2
pαp

αϕ(x, t)

so again we require the energy condition
pαp

α = m2

We can solve this for the energy,

E+ =
√

p2 +m2

E− = −
√
p2 +m2

The general Fourier superposition is

ϕ (x, t) =
1

(2π)
3/2

ˆ √
2E
(
a (E,p) e

i
~ (pαx

α) + b† (E,p) e−
i
~ (pαx

α)
)
δ
(
pαp

α −m2
)

Θ(E)~−4d4p

=
1

(2π)
3/2

ˆ
d3k√

2ω

(
a (k) ei(ωt−k·x) + b† (k) e−i(ωt−k·x)

)
Collecting this together with the the conjugate field and the momenta,

ϕ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
a (k) ei(ωt−k·x) + b† (k) e−i(ωt−k·x)

)
(33)

ϕ∗ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
b (k) ei(ωt−k·x) + a† (k) e−i(ωt−k·x)

)
(34)

π (x, t) =
i

(2π)
3/2

ˆ √
ω

2
d3k

(
b (k) ei(ωt−k·x) − a† (k) e−i(ωt−k·x)

)
(35)

π∗ (x, t) =
i

(2π)
3/2

ˆ √
ω

2
d3k

(
a (k) ei(ωt−k·x) − b† (k) e−i(ωt−k·x)

)
(36)
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Notice that we may obtain the conjugate expressions, Eqs.(34) and (36) simply by interchanging awith b,
and interchanging a† with b†.

We need to invert these Fourier integrals to solve for a (k) , b (k) , a† (k) and b† (k) .

Exercise: By taking inverse Fourier integrals, show that

a (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ (x, 0)− i

ω
π∗ (x, 0)

)
eik·x (37)

b (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ∗ (x, 0)− i

ω
π (x, 0)

)
eik·x (38)

It follows immediately from this exercise that the conjugate mode amplitudes are given by

a∗ (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ∗ (x, 0) +

i

ω
π (x, 0)

)
e−ik·x (39)

b∗ (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ (x, 0) +

i

ω
π∗ (x, 0)

)
e−ik·x (40)

2.3 Quantization
We can now move to study the quantum operators. When the fields become operators the complex conjugates
above become adjoints (for example, a∗ (k) → a† (k)). We next find the commutation relations that hold
among the four operators â (k) , b̂ (k) , â† (k) and b̂† (k).

Exercise: From the commutation relations for the fields and conjugate momenta, Eqs.(30) and (31), show
that [

â (k) , â† (k′)
]

= δ3 (k− k′)[
b̂ (k) , b̂† (k′)

]
= δ3 (k− k′)

Exercise: From the commutation relations for the fields and conjugate momenta, eqs.(30) and (31), show
that [

â (k) , b̂ (k′)
]

= 0[
â (k) , b̂† (k′)

]
= 0

As we did for for the Klein-Gordon field, we could go on to construct the Poincaré currents, writing the
energy, momentum and angular momentum in terms of the creation and anihilation operators. These emerge
much as before. However, for the charged scalar field, there is an additional symmetry.

Exercise: Find the Hamiltonian operator

Ĥ =

ˆ
:
(
π∗π + ∇ϕ∗ ·∇ϕ̂+m2ϕ̂∗ϕ̂

)
: d3x

in terms of the creation and annihilation operators.
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2.4 Noether current and current operator
The transformation

ϕ (x, t) → eiαϕ (x, t)

ϕ∗ (x, t) → e−iαϕ∗ (x, t) (41)

leaves the action, Eq.(??), invariant, so the complex scalar field has a global U (1) symmetry. Therefore,
there is an additional Noether current. In this case, the variation of the Lagrangian, Eq.(25), under the
U (1) symmetry is also zero, so from eq.(??) the Noether current is simply

Jµ ≡ ∂L
∂ (∂µφA)

∆A

where
φA → φA + ∆A

(
φB , x

)
defines the infinitesimal transformation ∆A. For an infinitesimal phase change, eiα ≈ 1 + iα so the fields
change by

ϕ → ϕ+ iαϕ

ϕ∗ → ϕ∗ − iαϕ∗

so the current is

Jα ≡ ∂L
∂ (∂αφ)

∆ϕ+
∂L

∂ (∂αφ∗)
∆ϕ∗

= (∂αϕ∗) iαϕ− (∂αϕ) iαϕ∗

= iα ((∂αϕ∗)ϕ− (∂αϕ)ϕ∗) (42)

We are guaranteed that the divergence of Jα must vanish and can easily check using the field equations:

∂αJ
α = iα∂α ((∂αϕ∗)ϕ− (∂αϕ)ϕ∗)

= iα ((∂α∂
αϕ∗)ϕ− (∂αϕ) (∂αϕ

∗) + (∂αϕ∗) (∂αϕ)− (∂α∂
αϕ)ϕ∗)

= −iα
(
m2

~2
ϕ∗ϕ− m2

~2
ϕϕ∗

)
= 0

In general, when new fields are introduced to make a global symmetry into a local symmetry, the new
fields produce interactions between the original, symmetric fields. The strength of this interaction is governed
by the Noether currents of the symmetry. In the present case, when this U(1) (phase) invariance is gauged
to produce an interaction, the new field that is introduced is the photon field, and it is this current Jα that
carries the electric charge. Therefore, writing e for α, and writing the 4-current as Jα = (ρ,J), we see that

ρ = ie (∂0ϕ
∗ϕ− ∂0ϕϕ∗) (43)

J = ie (ϕ∇ϕ∗ − ϕ∗∇ϕ) (44)

2.5 Conserved charge operator
Classically, the spatial integral of the charge density ρ gives us conserved charge,

Q =

ˆ
J0d3x

=

ˆ
ρd3x
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While all of the current may be expressed in terms of operators on quantum states, we will be particuarly
interested in the total charge. Substituting the operator expressions for the fields, we find that the conserved
charge is given by

Q̂ =

ˆ
: ρ̂ : d3x

= ie

ˆ
: (∂0ϕ̂

∗ϕ̂− ∂0ϕ̂ϕ̂∗) : d3x

= ie

ˆ
(π̂ϕ̂− π̂∗ϕ̂∗) d3x

Substituting the fields from Eqs.(33) - (36), this becomes

Q̂ = − e

(2π)
3

ˆ
d3x :

(ˆ √
ω

2
d3k

(
b̂ (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

))(ˆ d3k′√
2ω′

(
â (k′) ei(ω

′t−k′·x) + b̂† (k′) e−i(ω
′t−k′·x)

))
:

−
(
â↔ b̂ and â† ↔ b̂†

)
= − e

2 (2π)
3

ˆ
d3x

ˆ
d3k

ˆ
d3k′

√
ω

ω′
:
(
b̂ (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) + b̂† (k′) e−i(ω
′t−k′·x)

)
:

−
(
â↔ b̂ and â† ↔ b̂†

)
= − e

2 (2π)
3

ˆ
d3x

ˆ
d3k

ˆ
d3k′

√
ω

ω′
:
[(
b̂ (k) â (k′) ei((ω+ω

′)t−(k+k′)·x) − â† (k) â (k′) e−i((ω−ω
′)t−(k−k′)·x)

)
+ b̂ (k) b̂† (k′) ei((ω−ω

′)t−(k−k′)·x) − â† (k) b̂† (k′) e−i((ω+ω
′)t−(k+k′)·x)

]
:

−
(
â↔ b̂ and â† ↔ b̂†

)
Integrate over d3x, giving Dirac delta functions, δ (k + k′) or δ (k− k′), then integrate over d3k′:

Q̂ = −e
2

ˆ
d3k

ˆ
d3k′

√
ω

ω′
:
[(
b̂ (k) â (k′) δ (k + k′) ei(ω+ω

′)t − â† (k) â (k′) δ (k− k′) e−i(ω−ω
′)t
)

+ b̂ (k) b̂† (k′) δ (k− k′) ei(ω−ω
′)t − â† (k) b̂† (k′) δ (k + k′) e−i(ω+ω

′)t
]

:

−
(
â↔ b̂ and â† ↔ b̂†

)
= −e

2

ˆ
d3k :

[
b̂ (k) â (−k) e2iωt − â† (k) â (k) + b̂ (k) b̂† (k)− â† (k) b̂† (−k) e−2iωt

]
:

+
e

2

ˆ
d3k :

[
â (k) b̂ (−k) e2iωt − b̂† (k) b̂ (k) + â (k) â† (k)− b̂† (k) â† (−k) e−2iωt

]
:

Noticing that changing variable k→ −k produces
∞̊

−∞

d3k b̂ (k) â (−k) e2iωt =

∞̊

−∞

d3k b̂ (−k) â (k) e2iωt

shows that the two e2iωt terms cancel, as do the final two e−2iωt terms. This leaves

Q̂ = −e
2

ˆ
d3k :

[
−â† (k) â (k) + b̂ (k) b̂† (k) + b̂† (k) b̂ (k)− â (k) â† (k)

]
:

Normal ordering, we have

Q̂ = e

ˆ
d3k

[
â† (k) â (k)− b̂† (k) b̂ (k)

]
18



Writing this in terms of number operators gives a new insight. Defining

N̂a (k) ≡ â† (k) â (k)

N̂b (k) ≡ b̂† (k) b̂ (k)

and acting on various states we find that these count the number of a-type and b-type particles at any given
k, respectively. If we integrate over k we find the total number of a-type and b-type particles in a state.

In terms of number operators, the charge operator is

Q̂ =

ˆ
d3k

[
eN̂a (k)− eN̂b (k)

]
so the a and b-type particles have opposite charge.

It proves to be of some importance that the charge e appears as the phase of the U(1) symmetry
transformation. This means that complex conjugation has the effect of changing the signs of all charges.
This charge conjugation symmetry is one of the central discrete symmetries associated with the Lorentz
group, and it plays a role when we consider the meaning of antiparticles later in this chapter. Notice, in
particular, in the solution for the complex scalar field, eq.(33), that the phase of the antiparticle is just
reversed from the phase for the particle.

3 Scalar multiplets
Suppose we have n scalar fields, ϕi, i = 1, . . . , n governed by the action

S =
1

2

ˆ ∑(
∂αϕi∂αϕ

i −m2ϕiϕi
)
d4x

The quantization is similar to the previous cases. We find the conjugate momenta, πi = δL
δϕ̇i = ϕ̇i and the

Hamiltonian is

H =
1

2

ˆ (
πiπi + Oϕi · Oϕi +m2ϕiϕi

)
d3x

The fundamental commutation relations are[
π̂i(x, t), ϕ̂j(x′, t)

]
= iδijδ3 (x− x′)

with all others vanishing. These lead to creation and annihilation operators as before,[
âi(k), âj†(k′)

]
= δijδ3 (k− k′)

and a number operator for each field,

N̂(k) = âi†(k)âi(k)

The interesting feature of this case is the presence of a more general symmetry. The action S is left
invariant by orthogonal rotations of the fields into one another. Thus, if Oi j is an orthogonal transformation,
we can define new fields

ϕi′ = Oi jϕ
i

It is easy to see that the action is unchanged by such a transformation. For each infinitesimal generator
of a rotation,

[
ε(rs)

]ij
= 1

2

(
δirδ

j
s − δisδjr

)
, there is a conserved Noether current found from the infinitesimal

transformation,

ϕi → ϕi +
[
ε(rs)

]ij
ϕj

19



Since the Lagrangian is invariant, the current is

Jα(rs) ≡ ∂L
∂ (∂αφi)

∆(rs)ϕ
i

= ∂αϕi
[
ε(rs)

]ij
ϕj

= ϕr∂αϕs − ϕs∂αϕr

We are guaranteed that the divergence of Jµ vanishes when the field equations are satisfied.
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