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Here we develop the Lorentz force law, and the Biot-Savart law for the magnetic field.

1 The Lorentz force law
Like electrostatics, magnetostatics begins with the force on a charged particle.

1.1 The force law
A beam of electrons passing a permanent magnet is deflected in a direction perpendicular to the velocity.
Moving electrons – a current in a wire – deflects a compass needle brought nearby. These observations show
that electric and magnetic phenomena influence one another.

Careful measurement shows that in the presence of both electric and magnetic fields, the force on a charge
Q is

F = Q (E + v ×B)

This is the Lorentz force law. Notice that this is consistent with the deflection described above since the
cross product v ×B is always perpendicular to both v and B.

Example: Motion of a particle in a constant magnetic field A particle of charge Q with initial
velocity v0 moves in a constant magnetic field of magnitude B0. Find the motion.

Choose the z-axis along the direction of the constant field, so that B = B0k̂, and choose the x-direction
so that the initial velocity is v0 = v0x î + v0zk̂. The Lorentz law gives the force. Substituting the magnetic
force into Newton’s second law, gives

Qv ×B = m
dv

dt

Writing out the separate components,

Q (vxBy − vyBx) = m
dvz
dt

Q (vyBz − vzBy) = m
dvx
dt

Q (vzBx − vxBz) = m
dvy
dt

Dropping Bx = By = 0, we have

dvz
dt

= 0

QvyBz = m
dvx
dt

−QvxBz = m
dvy
dt
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The first equation immediately integrates twice to give

z = z0 + v0zt

so the charge moves with constant velocity in the direction parallel to the field. For the remaining two
equations, differentiate each with respect to t,

Q
dvy
dt

Bz = m
d2vx
dt2

−Qdvx
dt

Bz = m
d2vy
dt2

and substitute the original equations to eliminate the first derivative terms and separate vx and vy,

d2vx
dt2

+
Q2B2

z

m2
vx = 0

d2vy
dt2

+
Q2B2

z

m2
vy = 0

The solutions are clearly harmonic. Define the cyclotron frequency,

ω ≡ QBz
m

so that

vx = A sinωt+B cosωt

vy = C sinωt+D cosωt

These must satisfy the original equations

dvx
dt

= ωvy

dvy
dt

= −ωvx

with the given initial conditions. Therefore, we must have

ωA = ωD

−ωB = ωC

ωC = −ωB
−ωD = −ωA

so that

vx = A sinωt+B cosωt

vy = −B sinωt+A cosωt

Fitting the initial values, we see that vx0 = B and 0 = v0y = A. Therefore, the velocity in the xy-plane is a
circle given by

vx = v0x cosωt

vy = −v0x sinωt

The full motion is a spiral parallel to the z-axis.
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1.1.1 Force on a current in a wire

Next, we consider how a current is affected by a magnetic field. The current is comprised of moving charges.
If the charges move at speed v = dl

dt , then in a time dt all charges in the interval dl = vdt pass a given point.
If the number of moving charges per unit length of the wire is λ = dq

dl , then the amount of charge passing
that point in time dt is

dq = λvdt

so the magnitude of the current is I = dq
dt = λv.

Now consider an element of charge, dq = λdl moving with speed v in a magnetic field B. The Lorentz
force law gives the force on dq,

dF = dqv ×B

=
dq

dt
(v ×B) dt

= I (dl×B)

Replacing the velocity using v = dl
dt for a displacement dl along the wire, this becomes

dF = I (dl×B)

Integrating along the length of the wire we get the total force on a current carrying wire,

F =

ˆ
I (dl×B)

= I

ˆ
dl×B

Example: Breaking a wire Consider a circular loop of wire in a magnetic field of radius .1m. The steel
wire has a tensile strength of 400MPa, and a cross-sectional radius of .25mm. How strong must a magnetic
field through the loop be in order to break the wire if the wire carries a current of 10A?

The tensile strength of 400MPa is

4× 108
N

m2

while the cross-sectional area of the wire is

πr2 = π ×
(
.25× 10−3

)2
= .196× 10−6m2

so the magnitude of the force required to break the wire is

F = 4× 108
N

m2
× .196× 10−6m2 = 78.5N

Assuming the magnetic field is perpendicular to the plane of the loop, the outward magnetic force on an
infinitesimal length dl of the wire is

F = IBdl

Now this force must be offset by the tension in the wire. If dl subtends an angle dθ then dl = Rdθ, while the
tensions at the ends of the segment, being tangent to the circle at their respective locations, aim at angles
differing by dθ. The inward component of each tension is

T⊥ = T sin
dθ

2
≈ 1

2
Tdθ
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so the total inward force due to tension is

Finward = 2T⊥ ≈ Tdθ

As long as the wire is in equilibrium, the inward and outward forces must be equal:

Fout = Fin

IBRdθ = Tdθ

IBR = T

The magnetic field required to break the wire is therefore

B =
T

IR

=
78.5N

10A× .1m
B = 78.5 Tesla

This calculation neglects the field produced by the current in the wire.
Currently, the strongest (pulsed) magnetic field yet obtained non-destructively in a laboratory (National

High Magnetic Field Laboratory, LANL) as of 2012 is 100.75 Tesla.

2 Current density
It turns out to be more appropriate to treat the current as a current density vector rather than a simple
current scalar, I, since the current may vary in both direction and magnitude from place to place. The
current density captures both of these features.

A current I may be viewed as made up of many charges in a (microscopically large, macroscopically
small) region d3x moving with velocity v (x). If the density of charges at x is ρ, then there is a current
density, J = ρv. The current vector I is then the integral of a current density in a region.

We have defined J so that the amount of charge in volume d3x moving with velocity v in the direction
of J is given by

dq =
Jd3x

v

If we write the volume element in terms of the displacement dl = vdt due to the motion and and area element
d2x orthogonal to this,

d3x = dld2x

then

dq =
Jd3x

v

=
Jdld2x

dl/dt

= Jd2xdt

Thus, we think of J as the amount of charge crossing the surface d2x in time dt.
Dividing this expression by dt and integrating over a cross-section of the current-carrying wire, the current

crossing any surface S is

I =
dq

dt
=

¨

S

J · ŝd2x

where ŝ is the unit normal to S in the direction of the current.
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2.1 Conservation of charge
Suppose we have a region of space with charge density ρ. Let some or all of this charge move as a current
density, J. Now, since we find that total charge is conserved, we know that the total charge in some volume
V can only change if the current carries charge across the boundary S if V. Therefore, with the charge in
the volume V given by

Qtot =

ˆ

V

ρd3x

the time rate of change of Qtot must be given by the total flux J across the boundary. Let n̂ be the outward
normal of the boundary S of V. Then

dQtot
dt

= −
˛

S

J · n̂d2x (1)

On the left side, we rewrite dQtot
dt by interchanging the order of integration and differentiation ,

dQtot
dt

=
d

dt

ˆ

V

ρd3x

=

ˆ

V

∂ρ

∂t
d3x

while on the right we use the divergence theorem, −
¸
S J · n̂d

2x = −
´
V∇ · Jd

3x. Substituting both these
changes into eq.(1), we have

ˆ

V

(
∂ρ

∂t
+ ∇ · J

)
d3x = 0

Since the final equation holds for all volumes V it must hold at each point, leading us to the continuity
equation:

∂ρ

∂t
+ ∇ · J = 0 (2)

An equation of this sort holds anytime there is a conserved quantity.
We define a steady state current to be one for which ρ and J are independent of explicit time dependence,

∂ρ
∂t = 0, ∂J∂t = 0. For a steady state current, the current density has vanishing divergence, ∇ · J = 0.

2.2 Examples of current density
a) A wire of rectangular cross section with sides a and b carries a total current I. Find the current density
if the flow is uniformly distributed through the wire.

The current density is defined so

I =
dq

dt
=

¨
J · ŝd2x

Taking the z-direction for the direction of the current, and noting that J is constant across the cross-section,
we have

Ik̂ = J k̂

aˆ

0

dx

bˆ

0

dy

I = Jab
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and therefore
J =

I

ab
k̂

If we want J to be defined everywhere, we may use theta functions to limit the range,

J =
I

ab
k̂Θ (a− x) Θ (x) Θ (b− y) Θ (y)

b) A thick disk of radius R and thickness L has a uniform charge density throughout its volume so that
the total charge is Q. The disk rotates with angular velocity ω. What is the current density inside the disk?
What is the current flowing between radius r and r + dr? What is the total current?

First, the charge density in the disk is the total charge over the total volume of the disk,

ρ =
Q

πR2L

The velocity at radius r is ωrϕ̂, so

J = ρv =
Qrω

πR2L
ϕ̂

The current at radius r through a cross-section of width dr and height L is the integral

dI =

L̂

0

Qrω

πR2L
drdzϕ̂ · ϕ̂

=
Qωrdr

πR2

The total current follows if we integrate across the radius of the cross-section,

I =

R̂

0

dI

=

R̂

0

Qωrdr

πR2

=
QωR2

2πR2

=
Qω

2π

This makes sense, since ω
2π is the fraction of a circle per unit time that the disk rotates, so we have that

fraction of the total charge passing per unit time.

3 The Biot-Savart law

3.1 The magnetic field due to a given current density
Next, we consider the effect of a current in producing a magnetic field. The experimental results are sum-
marized for steady state line currents by the Biot-Savart law,

B (x0) =
µ0

4π

ˆ
J (x)× (x0 − x)

|x0 − x|3
d3x
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The constant µ0 is the permeability of free space with the value µ0 = 4π × 10−7N/A2. There is a clear
parallel with our equation for the electric field. Instead of simply the charge density times the factor x0−x

|x0−x|3
,

we now require the cross product with the current density.
We can simplify this expression in the case of a current carrying wire. Let the current density be restricted

to a wire in the x-direction so that
J (x) = îIδ (y) δ (z)

Then

B (x0) =
µ0

4π

ˆ
îIδ (y) δ (z)× (x0 − x)

|x0 − x|3
d3x

=
µ0

4π

ˆ I
(̂
idx

)
× (x0 − x)

|x0 − x|3

This is now integrated along the length of the wire. More generally, let the current be in the direction dl.
Then we have the Biot-Savart law for a current,

B (x0) =
µ0

4π

ˆ
Idl× (x0 − x)

|x0 − x|3

where the currents move along wires with tangents dl at positions x. This was the original form of the law.
The law may also be specialized to surface current density K (x) by simply restricting the current density

to a surface:
B (x0) =

µ0

4π

ˆ
K (x)× (x0 − x)

|x0 − x|3
d2x

Now that we have an expression for the magnetic field in terms of source current density, we can find the
laws of magnetostatics.

3.2 Magnetic field of a long straight wire
Find the magnetic field above a long straight wire carrying a steady current I.

Using the Biot-Savart law for a steady current, we have

B (x0) =
µ0

4π

ˆ
Idl× (x0 − x)

|x0 − x|3

Using cylindrical coordinates, let the current flow in the z-direction, so that dl = dzk̂. Then x = zk̂ and
we take x0 = ρρ̂ so that the observation point is a distance ρ radially out from the wire. Evaluating the
integrand, we have

B (x0) =
µ0

4π

∞̂

−∞

Idzk̂×
(
ρρ̂− zk̂

)
∣∣∣ρρ̂− zk̂∣∣∣3

=
µ0I

4π

∞̂

−∞

dzρk̂× r̂∣∣∣ρρ̂− zk̂∣∣∣3
=

µ0Iρ

4π
ϕ̂

∞̂

−∞

dz

(ρ2 + z2)
3/2

Notice that the direction of the field circulates around the wire. Letting z = ρ tan θ and changing variables,

dz =
ρ

cos2 θ
dθ

7



and the integral gives

∞̂

−∞

dz

(ρ2 + z2)
3/2

=

∞̂

−∞

ρ

cos2 θ
dθ

1(
ρ2 + ρ2 tan2 θ

)3/2
=

1

ρ2

π
2ˆ

−π2

cos θdθ

=
1

ρ2
sin θ|π/2−π/2

=
2

ρ2

and therefore,

B (x0) =
µ0I

2πρ
ϕ̂

3.3 Magnetic field of a current loop
Consider a single loop of thin wire of radius R lying in the xy plane, centered on the z-axis, and carrying a
steady current I. Find the magnetic field at points along the z-axis.

There is no symmetry to the magnetic field strength, so we must use the Biot-Savart law. We may write
the current densityas

J = Iδ (ρ−R) δ (z) ϕ̂

or simply use the resulting line charge form of the Biot-Savart law,

B (x0) =
µ0

4π

ˆ
Idl× (x0 − x)

|x0 − x|3

The observation point x0 lies along the z-axis, so x0 = zk̂. The position of the current is x = Rρ̂ as ϕ varies
from 0 to π. This means that dl = Rdϕϕ̂. Assembling the parts,

B (x0) =
µ0

4π

ˆ IRdϕϕ̂×
(
zk̂− ρρ̂

)
∣∣∣zk̂−Rρ̂∣∣∣3

=
µ0

4π

ˆ IRdϕ
(
zρ̂+Rk̂

)
(z2 +R2)

3/2

=
µ0IRz

4π (z2 +R2)
3/2

ˆ
ρ̂dϕ+

µ0IR
2

4π (z2 +R2)
3/2

k̂

ˆ
dϕ

The first integral vanishes,

2πˆ

0

ρ̂dϕ =

2πˆ

0

(̂
i cosϕ+ ĵ sinϕ

)
dϕ

=
(̂
i sinϕ− ĵ cosϕ

)∣∣∣2π
0

= 0
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The second just gives 2π, so

B (z) =
µ0IR

2

2 (z2 +R2)
3/2

k̂
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