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1 Free particle
The simplest example is the case of a free particle, for which the Hamiltonian is

H =
p2

2m

and the Hamilton-Jacobi equation is
∂S

∂t
= − 1

2m

(
∂S

∂x

)2

Let
S = f(x)− Et

Then f(x) must satisfy
df

dx
=
√

2mE = a

where E and a are constants. Therefore

f(x) = ax− c

where c is constant and we write the integration constant E in terms of the new (constant) momentum.
Hamilton’s principal function is therefore

S (x, q, t) = ax− a2

2m
t− c

We have no simple way to express this in terms of q, because the original coordinate x is cyclic. However,
we know that the new Hamiltonian must vanish, so

K = 0 = H +
∂S

∂t

=
p2

2m
− a2

2m

so that p = a. This means that p is constant, and therefore equal to its initial value, making the initial
momentum π = a. The principal function, dropping the irrelevant constant, is therefore

S (x, π, t) = πx− π2

2m
t

For a generating function of this type we set f = −πq + S so that

pdx−Hdt = πdq −Kdt+ df

= πdq −Kdt− πdq − qdπ +
∂S

∂x
dx+

∂S

∂π
dπ +

∂S

∂t
dt
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and we therefore have the relations

p =
∂S

∂x
= π

q =
∂S

∂π
= x− π

m
t

K = H +
∂S

∂t
=

p2

2m
− π2

2m

Because p = π, the new Hamiltonian, K, is zero. This means that both q and π are constant. The solution
for x and p follows immediately:

x = q +
π

m
t

p = π

We see that the new canonical variables (q, π) are just the initial position and momentum of the motion, and
therefore do determine the motion. The fact that knowing q and π is equivalent to knowing the full motion
rests here on the fact that S generates motion along the classical path. In fact, given initial conditions (q, π),
we can use Hamilton’s principal function as a generating function but treat π as the old momentum and x
as the new coordinate to reverse the process above and generate x(t) and p.

2 Projectile motion
Consider a particle in a uniform gravitational field, with potential

V = mgz

The kinetic energy is

T =
1
2
m
(
ẋ2 + ẏ2 + ż2

)
so taking the initial time to be t0 =0, the action is given by

S =

tˆ

0

[
1
2
m
(
ẋ2 + ẏ2 + ż2

)
−mgz

]
dt

The conjugate momenta are then

px = mẋ

py = mẏ

pz = mż

and the Hamiltonian is

H =
p2
x + p2

y + p2
z

2m
+mgz

Since x and y are cyclic, and ∂H
∂t = 0, the corresponding momenta, px and py, are conserved, and the

energy, E = H, is conserved.
The Hamilton-Jacobi equation is

1
2m

((
∂S
∂x

)2

+
(
∂S
∂z

)2

+
(
∂S
∂z

)2
)

+mgz = −∂S
∂t
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This is completely separable. Writing

S = Sx (x) + Sy (y) + Sz (z)− Et

gives

1
2m

((
dSx
dx

)2

+
(
dSy
dy

)2

+
(
dSz
dz

)2
)

+mgz = E

(
dSx
dx

)2

+
(
dSy
dy

)2

+
(
dSz
dz

)2

+ 2m2gz = 2mE

This is only possible if (
dSx
dx

)2

= α2

(
dSy
dy

)2

= β2

where α and β are constants, and (
dSz
dz

)2

+ 2m2gz = 2mE − α2 − β2

The first two are immediately integrated to give

Sx = αx+ c1

Sy = βy + c2

Define γ2 = 2mE − α2 − β2, so that

dSz
dz

=
√
γ2 − 2m2gz

Sz =

zˆ

z0

√
γ2 − 2m2gzdz

Substitute, ζ = γ2 − 2m2gz, then

Sz = − 1
2m2g

zˆ

z0

√
ζdζ

= − 1
2m2g

2
3
ζ3/2

∣∣∣z
z0

= − 1
3m2g

[(
γ2 − 2m2gz

)3/2 − (γ2 − 2m2gz0
)3/2]

and Hamilton’s principal function is therefore

S = αx+ βy − 1
3m2g

(
γ2 − 2m2gz

)3/2 − Et
where we drop the irrelevant constants.
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Again using this as a generating function of type S (xi, πi, t), we have

pi =
∂S

∂xi

qi =
∂S

∂πi

K = H +
∂S

∂t

The first equation gives

px = α

py = β

pz =
√
γ2 − 2m2gz

=

√
2m
(
E − p2

x

2m
−

p2
y

2m
−mgz

)
and the final shows that H = E, as expected. The energy may be written as

2mE = α2 + β2 + γ2

so that
pz =

√
α2 + β2 + γ2 − p2

x − p2
y − 2m2gz

and

S = αx+ βy − 1
3m2g

(
γ2 − 2m2gz

)3/2 − 1
2m

(
α2 + β2 + γ2

)
t

Taking the constants of integration (α, β, γ) as the new “momentum” variables, we have

qx =
∂S

∂α

= x− α

m
t

qy =
∂S

∂β

= y − β

m
t

qz =
∂S

∂β

= − γ

m2g

(
γ2 − 2m2gz

)1/2 − 1
m
γt

Finally, we invert these relations to find x, y, z as functions of the initial conditions and time:

x = qx +
α

m
t

y = qy +
β

m
t(

qz +
1
m
γt

)2

=
γ2

m4g2

(
γ2 − 2m2gz

)
(
qz +

1
m
γt

)2

=
γ4

m4g2
− 2γ2

m2g
z
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2γ2

m2g
z =

γ4

m4g2
−
(
qz +

1
m
γt

)2

2γ2

m2g
z =

γ4

m4g2
−
(
q2z +

2
m
qzγt+

1
m2

γ2t2
)

z =
m2g

2γ2

[
γ4

m4g2
− q2z −

2
m
qzγt−

1
m2

γ2t2
]

z =
(

γ2

2m2g
− m2gq2z

2γ2

)
− mgqz

γ
t− g

2
t2

and we may identify

z0 =
γ2

2m2g
− m2gq2z

2γ2

ż0 = −mgqz
γ

3 Simple harmonic oscillator
Consider a 1-dim simple harmonic oscillator, with action

S =
ˆ [

1
2
mẋ2 − 1

2
kx2

]
dt

momentum,
p = mẋ

and Hamiltonian

H =
p2

2m
+

1
2
kx2

The Hamiltonian-Jacobi equation is

1
2m

(
∂S
∂x

)2

+
1
2
kx2 = −∂S

∂t

Write
S = Sx (x)− Et

to separate variables. This gives one integration constant, E, which is conveniently written as E = π2

2m .

Then the new variable π has units of momentum. Introducing ω =
√

k
m as well, the remaining part of the

equation is then (
dSx
dx

)2

+mkx2 = π2

dSx
dx

=
√
π2 −m2ω2x2

Sx =

xˆ

x0

√
π2 −m2ω2x2dx

= π

xˆ

x0

√
1− m2ω2x2

π2
dx
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and with x = π
mω sin θ this becomes

Sx = π

xˆ

x0

√
1− sin2 θ

π

mω
cos θdθ

π2

mω

xˆ

x0

cos2 θdθ

=
π2

2mω

xˆ

x0

(cos 2θ + 1) dθ

=
π2

2mω

(
1
2

sin 2θ + θ

)
=

π2

2mω
(sin θ cos θ + θ)

=
π2

2mω

(
mωx

π

√
1− m2ω2x2

π2
+ sin−1

(mωx
π

))

=
x

2

√
π2 −m2ω2x2 +

π2

2mω
sin−1

(mωx
π

)
Therefore,

S =
x

2

√
π2 −m2ω2x2 +

π2

2mω
sin−1

(mωx
π

)
− π2t

2m
and this is a function of the the old position and the new momentum, S (x, π), so we haveTherefore,

p =
∂S
∂x

q = −∂S
∂π

K = H +
∂S
∂t

We immediately have

K = H − π2

2m
= H − E
= 0

so that Hamilton’s equations give q and π constant. Then

p =
∂S
∂x

=
∂

∂x

(
x

2

√
π2 −m2ω2x2 +

π2

2mω
sin−1

(mωx
π

)
− π2t

2m

)
=

1
2

√
π2 −m2ω2x2 − 2m2ω2x2

4
√
π2 −m2ω2x2

+
π2

2mω
1√

1− m2ω2x2

π2

mω

π

=
1

2
√
π2 −m2ω2x2

(
π2 −m2ω2x2 −m2ω2x2 + π2

)
=

√
π2 −m2ω2x2

6



which we recognize as the usual energy relationship

E =
π2

2m

=
p2

2m
+

1
2
mω2x2

Finally, to find the motion, we compute

q = −∂S
∂π

= − ∂

∂π

(
x

2

√
π2 −m2ω2x2 +

π2

2mω
sin−1

(mωx
π

)
− π2t

2m

)

= −

 xπ

2
√
π2 −m2ω2x2

+
π

mω
sin−1

(mωx
π

)
+

π2

2mω
1√

1− m2ω2x2

π2

(
−mωx

π2

)
− πt

m


= − xπ

2
√
π2 −m2ω2x2

− π

mω
sin−1

(mωx
π

)
+

πx

2
√
π2 −m2ω2x2

+
πt

m

q = − π

mω
sin−1

(mωx
π

)
+
πt

m

Solving for x, we have

π

mω
sin−1

(mωx
π

)
= −q +

πt

m

sin−1
(mωx

π

)
=

mω

π

(
−q +

πt

m

)
x =

π

mω
sin
(
ωt− mωq

π

)
We may identify the amplitude and phase of the oscillator as

A =
π

mω

ϕ0 =
mωq

π

so that the position and momentum are

x (t) = A sin (ωt− ϕ0)

p (t) =
√
π2 −m2ω2x2

=
√
m2ω2A2 −m2ω2A2 sin2 (ωt− ϕ0)

= mωA cos (ωt− ϕ0)
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