Hamilton-Jacobi theory
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1 Free particle

The simplest example is the case of a free particle, for which the Hamiltonian is
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and the Hamilton-Jacobi equation is
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where E and a are constants. Therefore
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where ¢ is constant and we write the integration constant F in terms of the new (constant) momentum.
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We have no simple way to express this in terms of ¢, because the original coordinate x is cyclic. However,
we know that the new Hamiltonian must vanish, so
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so that p = a. This means that p is constant, and therefore equal to its initial value, making the initial
momentum 7 = a. The principal function, dropping the irrelevant constant, is therefore
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For a generating function of this type we set f = —mwq + S so that
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and we therefore have the relations
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Because p = m, the new Hamiltonian, K, is zero. This means that both ¢ and 7 are constant. The solution
for z and p follows immediately:
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We see that the new canonical variables (g, 7) are just the initial position and momentum of the motion, and
therefore do determine the motion. The fact that knowing ¢ and = is equivalent to knowing the full motion
rests here on the fact that S generates motion along the classical path. In fact, given initial conditions (g, ),
we can use Hamilton’s principal function as a generating function but treat 7 as the old momentum and x
as the new coordinate to reverse the process above and generate z(t) and p.

2 Projectile motion

Consider a particle in a uniform gravitational field, with potential
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The kinetic energy is
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so taking the initial time to be ty =0, the action is given by
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The conjugate momenta are then

py = my
p: = mz

and the Hamiltonian is ) ) )
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Since = and y are cyclic, and %—If = 0, the corresponding momenta, p, and p,, are conserved, and the
energy, I = H, is conserved.
The Hamilton-Jacobi equation is
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This is completely separable. Writing
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where o and 3 are constants, and

The first two are immediately integrated to give
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Define v2 = 2mFE — o? — 32, so that
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Substitute, ¢ = 72 — 2m?gz, then
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and Hamilton’s principal function is therefore
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where we drop the irrelevant constants.
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Again using this as a generating function of type S (z;, m;,t), we have
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and the final shows that H = E, as expected. The energy may be written as
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Taking the constants of integration («, 3,v) as the new “momentum” variables, we have
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Finally, we invert these relations to find x,y, z as functions of the initial conditions and time:
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3 Simple harmonic oscillator
Consider a 1-dim simple harmonic oscillator, with action
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and Hamiltonian
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The Hamiltonian-Jacobi equation is
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to separate variables. This gives one integration

Then the new variable 7 has units of momentum.
equation is then
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constant, E, which is conveniently written as £ = 7.

Introducing w = 1/% as well, the remaining part of the
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and with x = -7 sin ¢ this becomes
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and this is a function of the the old position and the new momentum, S (x, 7), so we haveTherefore,
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so that Hamilton’s equations give ¢ and 7 constant. Then
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which we recognize as the usual energy relationship
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Finally, to find the motion, we compute
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Solving for x, we have
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We may identify the amplitude and phase of the oscillator as
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