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Introduction to the Hamiltonian Formalism

To finish the semester we return to formal developments: an introduction to the Hamil-

tonian formulation of mechanics. This formulation of mechanics is in many ways more

powerful than the Lagrangian formulation. Among the advantages of Hamiltonian me-

chanics we note that: it leads to powerful geometric techniques for studying the properties

of dynamical systems; it allows a much wider class of coordinates than either the Lagrange

or Newtonian formulations; it allows for the most elegant expression of the relation be-

tween symmetries and conservation laws; it leads to many structures that can be viewed

as the macroscopic (“classical”) imprint of quantum mechanics.

Although the Hamiltonian form of mechanics is logically independent of the Lagrangian

formulation, it is convenient and instructive to introduce the Hamiltonian formalism via

transition from the Lagrangian formalism, since we have already developed the latter. (In

a more advanced course one would eventually give an ab initio development of the Hamil-

tonian formalism.) The most basic change we encounter when passing from Lagrangian

to Hamiltonian methods is that the “arena” we use to describe the equations of motion is

no longer the configuration space, but rather the momentum phase space. Recall that the

Lagrangian formalism is defined once one specifies a configuration space Q (coordinates

qi) and then the velocity phase space Ω (coordinates (qi, q̇i)). The mechanical system is

defined by a choice of Lagrangian, L, which is a function on Ω (and possible the time):

L = L(qi, q̇i, t).

Curves in the configuration space Q – or in the velocity phase space Ω – satisfying the

Euler-Lagrange (EL) equations,

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0,

define the dynamical behavior of the system. The EL equations shown above are second

order; each point of Ω defines possible initial conditions for the system. Because solutions

are uniquely determined by initial conditions there is a unique curve satisfying the EL

equations passing through every point of Ω.

A simple, geometrically natural way to define the motion of a system is to define the

allowed curves directly by specifying the tangent vectors to these curves at each time.

Because there is a unique curve satisfying the EL equations passing through every point
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of Ω, the set of physically possible curves can be characterized by a vector field on Ω.

The “field lines” of this vector field are the physical motions of the system in Ω.* So, we

can characterize a dynamical system by a vector field on Ω. Ideally, we would like a nice

way to characterize this vector field for this or that dynamical system. The Lagrangian

formulation is not quite designed to do this. There the arena is the space of positions and

velocities, (qi, q̇i). A curve (qi(t), q̇i(t)) has tangent vector V at time t given by components

(dq
i

dt ,
dq̇i

dt ). We have, of course,

dqi

dt
= q̇i,

but how do we specify dq̇i

dt ? Well, the EL equations implicitly define this part of the tangent

vector to the curve in velocity phase space, of course, since these equations are second-order

in time derivatives, coming from

d

dt

∂L

∂q̇i
=

∂2L

∂q̇iq̇j
q̈j + . . . .

We can isolate the q̈i by multiplying the EL equations by the inverse matrix to ∂2L
∂q̇iq̇j

(which

we assume exists). The we will get an expression of the type

q̈i = F i(q, q̇, t),

so that the vector field V in Ω defining the dynamics has components given by

V = (q̇i, F i).

This is fine, but not terribly explicit.

As we shall show, we can get a much more explicit – and very simple – description

of the motion if we work in the momentum phase space. This is the idea behind the

Hamiltonian formalism. We shall see that the equations of motion of the system are just

the specification of a vector field on the momentum phase space, and this vector field is

determined in a very simple way by a single function (the Hamiltonian).

The momentum phase space, Γ, is the space of coordinates and canonical momenta,

(qi, pi). Recall that the canonical momenta can be defined from the Lagrangian via

pi(q, q̇, t) =
∂L

∂q̇i
.

In the Lagrangian formalism we view the canonical momenta as some functions on Ω and

possibly the time (typically of the form pi = mq̇i for a particle). The motion of the system

can be described by
dqi

dt
= q̇i,

dpi
dt

=
∂L

∂qi
.

* Mathematicians call this set of curves the flow of the vector field.
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Thus you can maybe see that the equations of motion “want” to describe the motion of

the system by specifying tangents to curves in momentum phase space. But we aren’t

there yet. This is because L is a function on velocity phase space and the partial of L with

respect to qi is taken holding q̇i fixed. We are in a sort of mixed world involving positions,

velocities and momenta, and they are not all independent variables. We need to get the

velocities out of the picture. If we can do this, the equations of motion will express the

physically allowed motions as curves in Γ:

qi = qi(t), pi = pi(t),

these curves being defined by specifying their tangents, i.e., via some equations of the form

dqi

dt
= F i(q, p, t),

dpi
dt

= Gi(q, p, t).

As we shall see, F and G — components of a vector field in Γ — cannot be just anything,

but must be obtained in a very particular way. Indeed, we shall now show that, once we

get rid of the velocities in favor of the momenta, the differential equations that define these

curves are obtained from a single function on Γ (and possibly time),

H = H(q, p, t),

known as the Hamiltonian.

Recall that the EL equations are computed from partial derivatives of the Lagrangian,

which appear in the differential

dL =
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i +

∂L

∂t
dt.

Here, of course, the partial derivatives with respect to the coordinates are taken while

holding the velocity variables and time fixed, the partials with respect to velocities hold

coordinates and time fixed, etc. We desire to express these quantities in terms of coordi-

nates and momenta only and translate the EL equations, which are differential equations

determining curves in (q, q̇) space, into differential equations determining curves in (q, p)

space. We need a way to pass from expressions which involve derivatives with velocities

held fixed (Lagrangian formalism) to expressions with momenta held fixed in the various

partial derivatives (Hamiltonian formalism). To do this, we use the Legendre transforma-

tion, which is perhaps familiar to you from thermodynamics.

To begin, we must assume that the relation

pi(q, q̇, t) =
∂L

∂q̇i
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can be solved to express the velocities in terms of (q, p) variables:*

q̇i = q̇i(q, p, t).

We define the Hamiltonian via the Legendre transformation

H(q, p, t) = piq̇
i(q, p, t)− L(q, q̇(q, p, t), t).

We then have

dH = q̇idpi + pidq̇
i −
(
∂L

∂qi

)
q̇,t
dqi −

(
∂L

∂q̇i

)
q,t
dq̇i +

(
∂L

∂t

)
q,q̇
dt

= q̇idpi −
(
∂L

∂qi

)
q̇,t
dqi +

(
∂L

∂t

)
q,q̇
dt,

where the subscripts on the partial derivatives emphasize what is being held fixed in

the derivative process. The key feature of the Legendre transformation L → H is that

the differentials dq̇i have dropped out of dH. Therefore we can compute partials of the

Hamiltonian (holding various momentum phase space variables fixed) and easily relate the

expressions obtained to partial derivatives that appear in the Lagrangian formalism where

velocity phase space variables are fixed. In detail, we have(
∂H

∂qi

)
p,t

= −
(
∂L

∂qi

)
q̇,t
,(

∂H

∂pi

)
q,t

= q̇i,(
∂H

∂t

)
q,p

= −
(
∂L

∂t

)
q,q̇
.

Exercise: Show that the Legendre transformation of the Hamiltonian, in which you elimi-

nate p in favor of q̇ leads back to the Lagrangian. More generally, show that two successive

Legendre transformations (with respect to the same pair of variables) is the identity trans-

formation.

Using the above relations between various partial derivatives, we can express the equa-

tions of motion as conditions on curves (qi(t), pi(t)) in momentum phase space via (exercise)

q̇i(t) =
∂H

∂pi
,

ṗi(t) = −∂H
∂qi

.

* For this to be possible, at least in a small enough region of Ω, it is necessary and sufficient

for the Hessian matrix, ∂2L
∂q̇i∂q̇j

to be non-singular.
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These are Hamilton’s equations of motion. As an exercise you can check (using the partial

derivative relations above) that the EL equations are satisfied if and only if Hamilton’s

equations are satisfied.

Key features of the Hamilton equations

Note that the coordinates and momenta are treated almost symmetrically in the Hamil-

ton equations. There is a key difference difference between coordinates and momenta,

though; note the minus sign in the ṗ equation. This minus sign is really all that distin-

guishes coordinates from momenta in the Hamiltonian formalism.

On curves in Γ satisfying the Hamilton equations, the numerical value of the Hamil-

tonian is the same as the value of the canonical energy on the corresponding curves in

Ω. Note that the condition for conservation of canonical energy, ∂L
∂t = 0, corresponds to

∂H
∂t = 0. Despite this relation between the Hamiltonian and the (canonical) energy, I must

emphasize the Hamiltonian is always to be thought of as a function on momentum phase

space.

If the dynamical system has n degrees of freedom, the Hamilton equations are a set of

2n first-order differential equations. Recall that, in general, the EL equations are a system

of n second-order equations for n unknowns. Thus the passage to the Hamilton equations

is an instance of the general rule that a system of n second order differential equations can

be expressed as a system of 2n first order equations (exercise) for 2n variables. There are

infinitely many ways to turn n second order equations into 2n first order equations accord-

ing to how you define the new n variables in terms of the velocities. In the Hamiltonian

formalism the relation between the new variables – the momenta – and the velocities is

determined by the choice of Hamiltonian. In particular, the equation

q̇i =
∂H

∂pi
,

gives a relation

q̇i = q̇i(q, p, t),

which can be solved to get

pi = pi(q, q̇, t).

Thus this half of the Hamilton equations reconstructs the relationship between the mo-

menta and the velocities. If you solve Hamilton’s equations you will get a solution

parametrized by 2n initial values, the initial values of the qi and pi variables. Since

we can always express p in terms of q̇ and vice versa, you see that the initial value problem

for the EL equations matches up with that for the Hamilton equations.
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The key discovery of Hamilton is that there is a special feature of dynamical systems

characterized by a variational principle (Hamilton’s principle), namely, the equations of

motion always have a standard – or “canonical” – first order form. This canonical form

of the equations specifies the tangent vector, (q̇i(t), ṗi(t)), at each point (specified by t) of

the curve qi = qi(t), pi = pi(t) in terms of partial derivatives of a single function H on Γ

(and possibly the time). The Hamiltonian equations are often referred to as the canonical

equations of motion. The Hamiltonian formalism that we are developing is often called

the canonical formalism. The variables (qi, pj) are called the canonical coordinates and

momenta, or sometimes just canonical variables, or canonical coordinates on the momentum

phase space Γ.

Although we derived the Hamilton equations from the EL equations, the Hamiltonian

formalism can be viewed as independent of the Lagrangian formalism. In this point of

view, we specify a dynamical system by first defining a phase space Γ, which includes a

choice of canonical variables (qi, pi). (We shall see that there is considerable freedom in

specifying these coordinates on Γ for any given dynamical system.) Different dynamical

systems may have the same phase space, but different dynamics, so the definition of Γ is

purely kinematical. To characterize the dynamical behavior of the system we specify the

Hamiltonian H as a function on Γ (and possibly time). In a nutshell: a dynamical system

is defined by the pair (Γ, H). Granted a dynamical system, i.e., a pair (Γ, H), we can

use Hamilton’s equations to define the allowed time evolutions of the system, i.e., curves

(q(t), p(t)). In particular, the various derivatives of H define the motion of the system

— as represented by curves in phase space — by specifying the tangent vectors to those

curves at each time. Equivalently, the allowed curves are the “field lines” of the vector

field ~V on Γ with q-p components given by

~V = (V q
i
, V pi) = (

∂H

∂pi
,−∂H

∂qi
).

From this point of view, the “art” of the physicist is to take a dynamical system of interest

from nature and devise a suitable phase space and Hamiltonian to model it.

Examples

Let us examine some familiar dynamical systems using the Hamiltonian formalism.

Particle in a Force Field

A particle with position vector ~r moves in a force field derivable from a potential

V (~r, t). The Lagrangian is

L =
1

2
m~̇r

2 − V (~r, t).
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The canonical momentum has Cartesian components given by

pi =
∂L

∂ẋi
= mẋi,

so that

~p = m~̇r ⇐⇒ ~̇r =
~p

m
.

The Hamiltonian is
H = ~p · ~̇r − L

= ~p ·
(
~p

m

)
−
[
p2

2m
− V

]
=

p2

2m
+ V.

The Hamilton equations are

ẋi =
∂H

∂pi
=
pi
m
,

ṗi = −∂H
∂xi

= −∂V
∂xi

,

so that

~̇r =
~p

m

~̇p = −∇V.

These equations are equivalent to the EL equations, i.e., to Newton’s second law (exercise).

In particular, the first equation gives the relation between velocity and momentum, with

this result in hand the second equation gives the law of motion.

Note that if a coordinate is absent from the Hamiltonian (so that H is translationally

invariant with respect to that coordinate), then the corresponding momentum component

will be conserved (exercise). This is easily seen to be a general rule since n of the Hamilton

equations are:

ṗi =
∂H

∂qi
.

In the special case of a Newtonian particle the cyclic coordinate simply indicates the

component of force in the corresponding direction in configuration space is zero. But,

again, the result applies to any Hamiltonian system.

We will later explore the general relation between symmetries and conservation laws

from the Hamiltonian point of view.

Spherical pendulum

7



The Hamiltonian Formalism.

The Lagrangian for a spherical pendulum of mass m and length R in a uniform gravi-

tational field takes the form

L =
1

2
mR2(θ̇2 + sin2 θφ̇2)−mgR cos θ.

Here we have oriented the z axis of spherical coordinates to point upward, i.e., against the

graviational force field. The canonical momenta are

pθ = mR2θ̇,

pφ = mR2 sin2 θφ̇.

The Hamiltonian is

H = pθ

( pθ
mR2

)
+ pφ

(
pφ

mR2 sin2 θ

)
−

[
p2
θ

2mR2
+

p2
φ

2mR2 sin2 θ
−mgR cos θ

]

=
p2
θ

2mR2
+

p2
φ

2mR2 sin2 θ
+mgR cos θ.

The Hamilton equations are

θ̇ =
pθ
mR2

,

φ̇ =
pφ

mR2 sin2 θ
,

ṗθ =
p2
φ cos θ

mR2 sin3 θ
+mgR sin θ,

ṗφ = 0.

You can check that this system of equations is equivalent to the equations of motion

obtained via Newton’s second law or via the EL equations. Note that, because φ is absent

in H, we get conservation of pφ. Using the φ̇ Hamilton equation, you can see that this is

conservation the z-component of angular momentum (exercise).

Example: Particle in a given electromagnetic field

The Lagrangian for a particle of mass m and charge q in a given electromagnetic field

( ~E(~r, t), ~B(~r, t)) is given by*

L =
1

2
m~̇r

2
+
q

c
~A · ~̇r − qφ,

where (φ, ~A) are any set of potentials for the given ~E and ~B:

~E = −1

c

∂ ~A

∂t
−∇φ,

* We use Gaussian units.
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~B = ∇× ~A.

The canonical momentum is (exercise)

~p = m~̇r +
q

c
~A,

The Hamiltonian is (exercise)

H =
(~p− q

c
~A)2

2m
+ qφ.

There are a few things to note here. On solutions to the Hamilton equations (where the

momenta and velocities are related as above), the term
(~p− q

c
~A)2

2m is the mechanical kinetic

energy of the particle (exercise). Thus, the vector potential appears in the Hamiltonian as

a function on phase space, but the vector potential makes no contribution to the numerical

value of the canonical energy. This is a manifestation of the fact that the magnetic field

does no work (exercise).

Next, note that the values of the canonical momentum have no immediate physical

significance. This is because it differs from the (physically meaningful) mechanical mo-

mentum m~v by the vector potential, which is not directly observable. In detail, recall that

the potentials are not uniquely associated to an electromagnetic field. Any two sets of

potentials, (φ, ~A) and (φ′, ~A′), related by a gauge transformation:

φ′ = φ− 1

c

∂Λ

∂t
,

~A′ = ~A+∇Λ,

where Λ(~r, t) is any function of the indicated variables, correspond to the same ~E and
~B (exercise). Thus the potentials are not uniquely determined by physical effects: the

potentials are not physically measurable. Because the canonical momentum relies upon ~A

for its definition, both the functional relation between canonical momentum, coordinates

and velocities and the numerical value of ~p along any motion of the particle is gauge-

dependent, i.e., not physically observable.

The Hamiltonian also suffers from this problem. Even though the numerical value

of the term
(~p− q

c
~A)2

2m is gauge invariant when ~p is related to the velocity via Hamilton’s

equations, this term renders the functional form of the Hamiltonian to be very much gauge-

dependent. Moreover, the presence of the scalar potential also makes the functional form

and the value of the Hamiltonian gauge-dependent. Because of this, only in specialized

situations does the numerical value of H have a direct physical meaning. For example, for

purely magnetic fields we can choose φ = 0; then the value of H is the mechanical kinetic
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energy, which is observable. Another situation where the value of the Hamiltonian has

a physical interpretation arises if we consider static electromagnetic fields. Then we can

choose potentials that are time independent and this means that we can only make gauge

transformations in which

Λ = Λ(~r), or Λ = (const.)t.

In this case, because t will not appear explicitly in H, we know that H will be a conserved

quantity – the energy. The value of the kinetic energy still has gauge invariant meaning,

but its functional form is gauge dependent. In the static case the potential φ can be

constructed in a nearly gauge invariant manner from the electric field via

φ =

∫
C

~E · d~l.

where C is a contour from some arbitrary reference point to the point where we are

computing the value of φ. For static fields ∇× ~E = 0, so the choice of C is irrelevant. The

choice of reference point reflects the freedom to add a constant to φ; clearly this freedom

cannot be avoided. The freedom to add a constant to φ is all the gauge freedom left in

the static case. Thus, H is still not measurable, but differences in canonical energy are

measurable in the static case.

Note that, in any case, the functional form of the Hamiltonian will always be gauge

dependent (even if its value has a gauge invariant meaning!). Nevertheless, the Hamilton

equations reproduce the Lorentz force law. This means that, while the Hamiltonian is a

gauge-dependent function on the phase space, the Hamilton equations are gauge invariant.

We will get a deeper understanding of this fact when we study canonical transformations.

Ignorable coordinates and conservation laws

Our basic results on cyclic coordinates and conservation laws is easily seen to hold in

the Hamiltonian formalism. Our Legendre transformation showed us that

∂L

∂qi
= −∂H

∂qi
,

∂L

∂t
= −∂H

∂t
.

Thus, if a particular coordinate or time is absent (ignorable) in the Lagrangian it will

also be absent in the Hamiltonian, and conversely. If a coordinate, say q1 is absent, its

Hamilton equations tell us that

ṗ1 = −∂H
∂q1

= 0.

Thus we recover the connection between ignorable coordinates and conservation laws.
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Likewise, if H is explicitly time independent, then we know it will be conserved. This

follows in a very nice way from Hamilton’s equations. We always have

dH

dt
=
∂H

∂qi
q̇i +

∂H

∂pi
ṗi +

∂H

∂t
.

Assuming the last term vanishes (“the Hamiltonian has no explicit time dependence”),

and restricting this identity to a phase space curve satisfying Hamilton’s equation, we get

dH

dt
=
∂H

∂qi
∂H

∂pi
+
∂H

∂pi

(
−∂H
∂qi

)
= 0.
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