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Introduction.

Mechanics is about how and why things move the way they do. As you can imagine,

it is one of the oldest disciplines in physics. In some sense, it is the originial discipline

of physics as we know “physics” today (thanks to Newton). This course is meant to be

the next step in mechanics sophistication after the mechanics explored in introductory

physics. Here we get to use your improved math and physics skills to really understand

what Newton did. You also get to move out of the 17th century understanding of mechanics

(Newton) into the 18th century version (Lagrange), and even into the 19th century version

(Hamilton). The twentieth century, as you know, showed that mechanics according to

Newton, Lagrange, and Hamilton was inadequate to describe the behavior of matter at

atomic distance scales and smaller. Quantum mechanics is needed for that. But, at

larger distance scales, “classical mechanics” — suitably amended to replace “Galilean

relativity” with Einstein’s theory of relativity (also from the early twentieth century) — is

an extremely successful framework for studying matter and its interactions. Moreover, one

can view classical mechanics (particularly in the Hamiltonian form) as the long-distance

imprint of quantum mechanics. As such, one can understand lots of quantum mechanical

structure already from structures which exist already in classical mechanics. Hopefully, we

will get to explore this latter point toward the end of the course.

The formal goals of this course include the following.

* Acquire a working knowledge of Newtonian, Lagrangian, and Hamiltonian formulations

of mechanics.

* Acquire an introductory understanding of variational principles in general and in me-

chanics in particular.

* Begin to be well-versed in a suite of exactly soluble dynamical systems (e.g., the har-

monic oscillator, the 2-body central force system, charged particles in prescribed elec-

tromagnetic fields, etc.).

* Begin to have a solid understanding of conservation laws, their utility, and their roots

in symmetries of variational principles.

* Begin to be proficient in mapping mechanical systems to mathematical representations

and analyzing the resulting mathematical model. (Problem solving!)

* Begin to be proficient with certain features of analytic geometry, vector analysis and

ordinary differential equations.
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* Begin to be proficient in scientific/mathematical written and oral exposition.

Yes! All this and more – in only one semester!

We’d better get started.

The ubiquitous “particle”.

Probably you have heard “particles” being discussed on plenty of occasions. You have

probably used the word yourself. But. . .what is a particle? In classical mechanics* the

“particle” is a very useful, simplified model of ordinary objects, or “bodies”. Mathemati-

cally, a particle is an object which is completely characterized by its position ~r = xî+yĵ+zk̂

and velocity ~v = vxî + vy ĵ + vz k̂. Here, “completely characterized” means that all mea-

surable aspects of the object can be expressed in terms of position and velocity. Of course

this is at best an idealization which works well sometimes (e.g., to figure out the motion

of the Earth around the Sun) but not so well other times (e.g., to understand the Coriolis

effect in our atmosphere, or to understand the tides, or to understand the rotation of the

Earth). The particle concept is also important insofar as we can view extended objects as

a collection of particles; from this point of view it is sufficient to understand the mechanics

of a particle and then work one’s way up to collections of particles.

The idea of a particle is almost inevitable in Newtonian mechanics. We have the famous

“F = ma”, which is meant to explain motion . . . but where is the force applied, and to

what does the acceleration refer? If you are thinking of a baseball falling to the ground

under the force of the Earth’s gravity, then you can answer these questions pretty easily.

Indeed, we almost instinctively model the baseball as a point mass located at the baseball’s

center of mass. This is a good idea; Newton tells us that acceleration of the ball’s center of

mass comes from the net gravitational force on the ball acting at its center of mass (as we

shall see). But to prove that this is true, theoretically speaking, presupposes breaking the

ball up into infinitely many “particles” each of which satisfies Newton’s second law. And

what about something a little more interesting, like the ocean – how do we model that?

View it as a continuous distribution of “particles”, each of which satisfies “F = ma”.

Configuration space. Curves. Velocity. Acceleration.

Having informally agreed to use (or break everything up into) particles, we now know

that the configuration of a particle is a point in Euclidean space. Usually we use a position

* In our most sophisticated physics framework for matter and its interactions, known as
quantum field theory a “particle” has a pretty precise meaning in terms of excited states of
a quantum field. At this point, the notion of “particle” is very different from a tiny little
point flying around in space!
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vector ~r, or Cartesian coordinates (x, y, z) to specify this location. Sometimes other co-

ordinates are useful, e.g., cylindrical coordinates (ρ, φ, z) and spherical polar coordinates

(r, θ, φ). Are you familiar with these curvilinear coordinate systems?

For the most part, mechanics is about motion. Motion of a particle is, evidently, a

continuous change in its configuration, i.e., its position, in the time t. Mathematically,

then, motion can be specified by picking three functions* x(t), y(t), and z(t) such that the

position of the particle (x, y, z) varies in time according to

x = x(t), y = y(t), z = z(t),

that is,

~r = ~r(t) = x(t)̂i+ y(t)ĵ + z(t)k̂.

These equations define a curve in Euclidean space. For example,

x = cos(t), y = sin(t), z = t

defines a helical motion along the z-axis, much as you would get for a charged particle

moving in a uniform magnetic field along the z-axis. In cylindrical coordinates (ρ, φ, z),

where

ρ =

√
x2 + y2, φ = tan−1

(y
x

)
,

this same curve looks like

ρ = 1, φ = t, z = t.

Can you prove this?

So, the configuration of a particle is a point in Euclidean space, and the motion of a

particle is a curve in Euclidean space. There are a couple of very important properties of

curves which we now need. Both are familiar to you in one guise or another. They are

velocity and acceleration. Velocity corresponds to the tangent to the curve. Of course,

each point of the curve – each instant of time for a given motion – has a tangent, and that

tangent may change from point to point in the curve – that is, change in time. We can

compute the velocity vector along the curve by differentiating the formula for the curve

with respect to time:

~v(t) =
d

dt
~r(t).

So, we have

~v(t) = vx(t)̂i+ vy(t)ĵ + vz(t)k̂,

with

vx(t) =
dx(t)

dt
, vy(t) =

dy(t)

dt
, vz(t) =

dz(t)

dt
,

* Here we use the usual physicist’s abuse of notation in which the same label is used to
denote coordinates and corresponding functions.
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In our helical motion example you can easily check that

~v(t) = − sin(t)̂i+ cos(t)ĵ + k̂.

Does this look right to you?

Exercise: What does the velocity look like in cylindrical coordinates? (Hint: this is slightly

subtle and there are two answers.)

As you probably guessed, we can get the acceleration just by differentiating again:

~a(t) =
d

dt
~v(t) =

d2

dt2
~r(t)

=
dvx(t)

dt
î+

dvy(t)

dt
ĵ +

dvz(t)

dt
k̂

=
d2x(t)

dt2
î+

d2y(t)

dt2
ĵ +

d2z(t)

dt2
k̂

Returning to the helical motion example, we have

~a(t) = − cos(t)̂i− sin(t)ĵ.

Does this make sense?

Note that the conditions for the acceleration vector to be zero are

d2x(t)

dt2
=
d2y(t)

dt2
=
d2z(t)

dt2
= 0.

The solution of these differential equations is easy enough:

x(t) = x0 + vx0 t, y(t) = y0 + v
y
0t, z(t) = z0 + vz0t,

or

~r(t) = ~r0 + ~v0t,

where ~r0 and ~v0 are 6 constants.

Exercise: Prove that these equations determine a straight line and that every straight line

is defined this way.

Geometrically, velocity is the tangent to the curve. What, then, is the geometric

interpretation of acceleration? Curvature.
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Newton’s First Law. Inertial Reference Frames.

If a particle undergoes the helical motion we just described, is it experiencing a force?

How about the zero acceleration motion – is there a force there? Trick questions! There

are no answers to these questions without more information. To be sure, in the helical

motion, for example, one instinctively assumes that some force must be making the par-

ticle execute the circular motion about the z axis. But what if the particle is actually

experiencing no forces but we are viewing it from a rotating reference frame? Same result.

Similarly, we instinctively see unaccelerated motion as being force free, but suppose the

particle is actually in free fall in a gravitational field and we simply used a clock that hap-

pened to speed up in the “real” time so that the motion looked as shown above? Again,

without further information one cannot say which is the true situation. You can think of

this ambiguity in connecting accelerated motion to forces as a key reason for introducing

Newton’s first law.

Newton’s first law, as Newton put it, is as follows.

Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum,

nisi quatenus a viribus impressis cogitur statum illum mutare.

Translation:

Every body persists in its state of being at rest or of moving uniformly straight forward,

except insofar as it is compelled to change its state by force impressed.

I know you have encountered some version of this law before. Have you ever wondered

why it is a law separate from the second law? After all, if we have “F = ma”, then

with F = 0 we get a = 0 and that is uniform straight motion, right? The reason we

need the first law is because of the ambiguity illustrated above. This is an ambiguity in

the choice of reference frame. A reference frame is a way of labeling events, which are

defined as things which happen at a given time and place. Put differently, a reference

frame fixes points of space and instants of time. A reference frame depicts spacetime. The

two interpretations of helical motion stem from labeling points of space in two different

ways, differing by a steady rotation. The two interpretations of the straight line, uniform

motion stem from labeling time in two different ways. Newton’s first law postulates that

there exists a reference frame in which a body, isolated from external forces, will move with

constant velocity. It is tacitly assumed that the remaining laws apply to such reference

frames. Indeed, “F = ma” doesn’t hold in a rotating reference frame, nor in a reference

frame with a non-uniform clock. We are meant to apply Newton’s second law in inertial

reference frames, which are defined by the first law.
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Newton’s first law is a rather deep statement about the nature of space and time

itself. It asserts that spacetime events can be organized into inertial reference frames

where Newton’s second law holds. It is not too hard to see that if there exists one inertial

reference frame then there exists infinitely many others. In particular, given an inertial

reference frame, defined by a choice of (t, x, y, z) one is free to (i) rotate to a new set of

axes, (ii) shift the origin of space to a new location, (iii) shift the origin of time to a new

instant, (iv) use a reference frame which is moving at constant relative velocity. This set

of transformations defines the totality of all inertial reference frames. The fact that there

are so many of them reflects the homogeneity and isotropy of space and the homogeneity

of time which is fundamental to Netwon’s mechanics.

Assuming we are in an inertial reference frame, defined by the first law, we an now

assert that the helical motion is due to a force and that the uniform, rectilinear motion is

force-free. These are, of course, applications of the second law, to which we now turn.
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