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Lecture 42

Relevant sections in text: §5.7

Selection rules for Electric Dipole Transitions

We have seen that the dominant transitions are of the electric dipole type. We now
consider some details of the dipole matrix elements

〈nf , lf ,mf |qê · ~X|ni, li,mi〉|.

In particular, we derive necessary conditions on l andm such that the dipole matrix element
is non-zero and hence electric dipole transitions can occur. These conditions are usually
called selection rules for the (first-order) electric dipole transitions. Transitions which do
not obey these selection rules are usually called “forbidden transitions”. Of course they are
only forbidden insofar as our approximations are valid. The forbidden transitions may very
well occur, but they will be far less likely than the (first-order) electric dipole transitions
being considered here.

The selection rules we shall derive are determined solely by the angular momentum
properties of the unperturbed stationary states. Thus, the selection rules rely upon the
fact that the stationary states can be chosen to be orbital angular momentum eigenstates,
which requires that the atomic potential V0 be a central potential: V0 = V0(| ~X|) (see
below). On the other hand, the selection rules do not depend upon any further properties
of this potential. To understand the orgin of the selection rules we digress for a moment
to consider symmetries and conservation laws.

Digression on Symmetries and Conservation Laws

Consider a system described by a (time-independent, for simplicity) Hamiltonian H.
We say that a unitary transformation U is a symmetry of the system if

U†HU = H ⇐⇒ [H,U ] = 0.

One way to understand the utility of this definition is to note that if U is a symmetry then
for any given state vector |ψ〉 there will always be another state vector U |ψ〉 which has the
same probability distribution for H. To prove this it is sufficient to note for any function
of one variable F (x) (e.g., a characteristic function for some energy or energies) we have

〈ψ|F (H)|ψ〉 = 〈ψ|F (U†HU)|ψ〉 = 〈ψ|U†F (H)U |ψ〉.

If U(λ) is a continuous symmetry, i.e., a 1 parameter family of unitary transformations
satisfying

U†(λ)HU(λ) = H, ∀ λ,
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then we get a conservation law. To see this, write

U(λ) = exp
{
− i
h̄
λG

}
,

where G is a Hermitian operator, the infinitesimal generator. The symmetry condition,
when expanded in powers of λ, shows that the infinitesimal change in H is given by λ

ih̄ [H,G]
and this must vanish:

[G,H] = 0.

This means that the probability distribution of G does not change in time, which you can
see, e.g., in the Heisenberg picture. Thus we have the very important result: To each
continuous symmetry there is associated a conservation law. The conserved quantity is the
infinitesimal generator of the symmetry. An important corollary of this result is that if G
generates a symmetry, then stationary states can also be chosen to be G eigenstates.

Rotational Symmetry

Here we apply the above considerations to explain how angular momentum conserva-
tion is tied to rotational symmetry.

Recall the unitary rotation operator:

U(n̂, θ) = e−
i
h̄θn̂· ~J .

For a spinless particle (which is how we are modeling the electron) we have

~J = ~L = ~X × ~P .

On position/momentum eigenvectors |~x〉, |~p〉 we have

e−
i
h̄θn̂· ~J |~x〉 = |R(n̂, θ)~x〉, e−

i
h̄θn̂· ~J |~p〉 = |R(n̂, θ)~p〉

where R(n̂, θ) is the 3-d orthogonal transformation rotating about the axis n̂ by the angle
θ. From this it follows that (exercise)

e
i
h̄θn̂·~L ~Xe−

i
h̄θn̂·~L = R(n̂, θ) ~X, e

i
h̄θn̂·~L ~Pe−

i
h̄θn̂·~L = R(n̂, θ)~P .

From this it follows that
e

i
h̄θn̂·~LP 2e−

i
h̄θn̂·~L = P 2,

and
e

i
h̄θn̂·~LV ( ~X)e−

i
h̄θn̂·~L = V (R(n̂, θ) ~X).

(The last relation can be seen using the spectral decomposition of V ( ~X), or by verifying
this relation in the position basis.)
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If the potential is rotationally invariant, i.e., is spherically symmetric, i.e., depends
only upon the distance | ~X| from the center of rotation, i.e., describes a central force, then

e
i
h̄θn̂·~LV ( ~X)e−

i
h̄θn̂·~L = V ( ~X).

The Hamiltonian is then rotationally invariant:

e
i
h̄θn̂·~L

[
P 2

2m
+ V ( ~X)

]
e−

i
h̄θn̂·~L =

P 2

2m
+ V ( ~X).

By considering an infinitesimal transformation it easily follows that

[H, ~L] = 0.

This is just infinitesimal rotation invariance. But it also means that angular momentum is
conserved — its probability distribution is unchanged in time. Moreover, we see that for
a central potential the energy eigenvectors can be chosen to be also angular momentum
eigenvectors.

Selection rules involving m

We now return to the electric dipole matrix element between stationary states – also
taken to be angular momentum eigenstates. We begin by obtaining restrictions on mi and
mf needed so that the three components of ~X have non-vanishing matrix elements. Our
main identity arises because ~X changes under rotations like a vector. Infinitesimally we
have that

[Xi, Lj ] = ih̄εijkXk.

In particular,
[X,Lz] = −ih̄Y, [Y,Lz] = ih̄X, [Z,Lz] = 0.

These formulas simply give the infinitesimal change of the position vector under rotations
(exercise) and are the infinitesimal versions of the formulas given above. You can easily
check them explicitly.

From these identities we have

0 = 〈nf , lf ,mf |[Z,Lz]|ni, li,mi〉 = (mi −mf )h̄〈nf , lf ,mf |Z|ni, li,mi〉,

so that the Z matrix element vanishes unless mi = mf . Next we have

−ih̄〈nf , lf ,mf |Y |ni, li,mi〉 = 〈nf , lf ,mf |[X,Lz]|ni, li,mi〉 = (mi−mf )h̄〈nf , lf ,mf |X|ni, li,mi〉

and

ih̄〈nf , lf ,mf |X|ni, li,mi〉 = 〈nf , lf ,mf |[Y, Lz]|ni, li,mi〉 = (mi−mf )h̄〈nf , lf ,mf |Y |ni, li,mi〉
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from which it follows that either

(mi −mf )2 = 1,

or
〈nf , lf ,mf |Y |ni, li,mi〉 = 〈nf , lf ,mf |X|ni, li,mi〉 = 0.

Thus, for the X and Y matrix elements to be non-vanishing we must have

mf = mi ± 1.

In summary, no electric dipole transitions occur unless

∆m = 0,±1.

If ∆m = 0, then only radiation with polarization with a component along z will stimulate
a transition (in this approximation). If ∆m = ±1, then polarization in the x−y plane will
stimulate transitions. Likewise, these are the polarizations that feature in the respective
emission processes, that is, the emitted radiation will have this polarization structure.
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