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Lecture 41

Relevant sections in text: §5.7

Transitions

We are exposing an atomic electron to a plane-polarized electromagnetic wave traveling
in the direction of the unit vector n̂:

~A(~r, t) = ê

∫ ∞
−∞

dω A(ω)e−iω(t− 1
c n̂·~r),

where A(ω) = A∗(−ω) determines the frequency composition of the wave. We also have
that

ê · n̂ = 0.

The vector ê determines the polarization.

Using first order perturbation theory, let us now compute the probability P (i → f)
for transition from an initial state, assumed to be an unperturbed stationary state at
time t0, to a final (unperturbed stationary) state at time t. To keep things a little more
concrete, we can suppose that the atomic electron is bound by a central force so that
the unperturbed stationary states can be described by a “principal quantum number” n
labeling the energies along with the usual orbital angular momentum quantum numbers
l and m (see below for more on this). The initial and final states are |ni, li,mi〉 at t = 0
|nf , lf ,mf 〉 at time t. The final state is labeled as if it were a bound state, but it will be
straightforward to adjust our results to apply to unbound final states whose energy lies in
a continuum. Also, you will easily see that most of what we do is insensitive to the details
of the particular potential we use for the atomic electron. We have

P (i→ f) ≈
∣∣∣∣{1
h̄

∫ t

t0
dt′
∫ ∞
−∞

dω eiωfit
′
[Vfi(ω)eiωt

′
+ V ∗if (ω)e−iωt

′
]
}∣∣∣∣2

Here
Vfi(ω) =

q

mc
A(ω)〈nf , lf ,mf |e−iω

1
c n̂· ~X ê · ~P |ni, li,mi〉.

The frequency ωfi depends upon our model of the atom, i.e., our choice for V0. If we
choose the Coulomb potential (so that we have a hydrogenic atom), then

ωfi =
1
h̄

(Ef − Ei) =
Z2q2

2a
(

1
n2
i

− 1
n2
f

),

with q the charge on the electron, Z the nuclear charge number, a the Bohr radius, and
n = 1, 2, . . . is the principal quantum number labeling the energy levels. (But, again, this
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particular formula for ωfi formula is contingent upon the simplest model of a hydrogenic
atom.)

Let us suppose that the electromagnetic radiation is a pulse of some finite duration
such that t0 is before the pulse arrives and t is after the pulse has passed. We can then
easily compute the transition probability by letting the range of time integration run from
−∞ to ∞. In this limit the time integral yields a delta function in frequency space. This
lets us perform the frequency integral. We get

P (i→ f) ≈ | 2πq
h̄mc

A(|ωfi|)〈nf , lf ,mf |e−i|ωfi| 1c n̂· ~X ê · ~P |ni, li,mi〉|2.

This formula applies to either stimulated emission or absorption.

Note that the only Fourier component of the radiation field that contributes to the
transition is at the frequency ωfi of the transition. If the wave has no frequency component
at ωfi then the transition probability vanishes (in this approximation). This jibes with the
picture of transitions being accompanied by emission or absorption of discrete “quanta”
of size h̄ωfi.

Let us express the transition probability in terms of the net energy delivered by the
pulse. It is not hard to see that the energy contained in the wave per unit area orthogonal
to the wave propagation (the Poynting flux) is given by

E =
∫ ∞
−∞

dt
c

4π
( ~E × ~B) · n̂ =

1
c

∫ ∞
0

dω ω2|A(ω)|2.

Let us define N(ω) as the energy carried by the wave (for all time) through unit area per
unit frequency:

N(ω) =
ω2

c
|A(ω)|2.

In terms of N(ω) we have

P (i→ f) ≈ 4π2α

m2h̄ω2
fi

|〈nf , lf ,mf |e−i|ωfi| 1c n̂· ~X ê · ~P |ni, li,mi〉|2N(ωfi),

where

α =
q2

h̄c
≈ 1

137
is the fine structure constant.

This probability comes as the product of 3 factors: (1) the intensity of the electro-
magnetic radiation (embodied in N(ω)), which reflects the adjustable role of the outside
influence that stimulates the transitions; (2) the fine structure constant, which charac-
terizes the strength (fixed by nature) of the electromagnetic interaction; (3) the matrix
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element between the initial and final states, which reflects the role played by the atomic
structure itself. We next spend some time analyzing this matrix element.

Electric dipole transitions

We now want to analyze the matrix element which appears in the transition probability.
This factor reflects the atomic structure and characterizes the response of the atom to the
electromagnetic wave.

Let us begin by noting that the wavelength of the radiation absorbed/emitted is on
the order of 2πc/ωfi ∼ 10−6m, while the atomic size is on the order of the Bohr radius
∼ 10−8m. Thus one can try to expand the exponential in the matrix element:

〈nf , lf ,mf |e−i|ωfi| 1c n̂· ~X ê · ~P |ni, li,mi〉 = 〈nf , lf ,mf |(1− i|ωfi|
1
c
n̂ · ~X + · · ·)ê · ~P |ni, li,mi〉.

The first term in this expansion, if non-zero, will be the dominant contribution to the
matrix element. Thus we can approximate

〈nf , lf ,mf |e−i|ωfi| 1c n̂· ~X ê · ~P |ni, li,mi〉 ≈ 〈nf , lf ,mf |ê · ~P |ni, li,mi〉,

which is known as the electric dipole approximation. Transitions for which this matrix ele-
ment is non-zero have the dominant probability; they are called electric dipole transitions.
We shall see why in a moment. Transitions for which the dipole matrix element vanishes
are often called “forbidden transitions”. This does not mean that they cannot occur, but
only that the probability is much smaller than that of transitions of the electric dipole
type, so they do not arise at the level of the approximation we are using.

If we restrict attention to the electric dipole approximation, the transition probability
is controlled by the matrix elements 〈nf , lf ,mf |~P |ni, li,mi〉. To compute them, we use
the fact that

[ ~X,H0] = ih̄
~P

m
,

and that
H0|n, l,m〉 = En|n, l,m〉.

We get
〈nf , lf ,mf |~P |ni, li,mi〉 =

m

ih̄
〈nf , lf ,mf | ~XH0 −H0 ~X|ni, li,mi〉

= imωfi〈nf , lf ,mf | ~X|ni, li,mi〉.

Now perhaps you can see why this is called a dipole transition: the transition only occurs
according to whether or not the matrix elements of the (component along ê of the) dipole
moment operator, q ~X, are non-vanishing.
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