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Lecture 37

Relevant sections in text: §5.6

Time Dependent Perturbation Theory (cont.)

Last time we supposed we could write the Hamiltonian in the form

H(t) = H0 + V (t),

and then we wrote the Schrödinger equation in the form

ih̄
d

dt
cn(t) =

∑
m

e
i
h̄ (En−Em)tVnm(t)cm(t),

where
H0|n〉 = En|n〉, Vnm(t) = 〈n|V (t)|m〉.

Now we suppose that the matrix elements Vnm are suitably small and we develop a
scheme to approximate the solutions of the Schrödinger equation as written above. To do
this we again introduce a parameter λ ∈ [0, 1] and replace V → λV . We then suppose the
solutions to the equations can be expressed as

cn(t) = c
(0)
n + λc

(1)
n + . . . .

Again, assuming the perturbation is “small”, we can approximate the solution by truncat-
ing the series.

Substituting this into the equations above, and equating powers of λ we get to first
order in λ (exercise):

ih̄
d

dt
c
(0)
n (t) = 0,

d

dt
c
(1)
n (t) =

∑
m

e
i
h̄ (En−Em)tVnm(t)c(0)

m (t).

The zeroth order equation recovers the result that the expansion coefficients are constant
in time when the perturbation is ignored. As in TIPT, the higher order equations involve
solutions to the lower order equations. To first order in perturbation theory the solutions
are easily obtained once initial conditions are selected.

For simplicity we shall suppose (as is often the case) that the initial state is an eigen-
state of H0. Setting |ψ(0)〉 = |i〉, i.e., taking the initial state to be one of the unperturbed
energy eigenvectors, we get as our zeroth-order approximation:

cn(t) ≈ c(0)
n = δni +O(V ).
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Using this in the first order equation we get

cn(t) ≈ c(0)
n + c

(1)
n (t) = δni +

1
ih̄

∫ t

0
dt′e

i
h̄ (En−Ei)t′Vni(t

′) +O(V 2).

We shall only deal with this first non-trivial approximation, which defines first-order time-
dependent perturbation theory.

We assumed that the system started off in the (formerly stationary) state |i〉 defined
by H0. Of course, generally the perturbation will be such that |i〉 is not a stationary state
for H, so that at times t > 0 the state vector will change. We can still ask what is the
probability for finding the system in an eigenstate |n〉 of H0. Assuming that n 6= i this is

P (i→ n, i 6= n) = |1
h̄

∫ t

0
dt′e

i
h̄ (En−Ei)t′Vni(t

′)|2.

This is the transition probability to first-order in TDPT. The probability for no transition
is, in this approximation,

P (i→ i) = 1−
∑
n 6=i

P (i→ n, i 6= n).

TDPT is valid so long as the transition probabilities are all much less than unity. Other-
wise, our approximation begins to fail.

The transition probability for i → n is only non-zero if there is a non-zero matrix
element Vni “connecting” the initial and final states. Otherwise, we say that the transition
is “forbidden”. Of course, it is only forbidden in the leading order approximation. If a
particular transition i → n is forbidden in the sense just described, then physically this
means that the transition may occur with very small probability compared to other, non-
forbidden transitions. To calculate this very small probability one would have to go to
higher orders in TDPT.

Example: time-independent perturbation

As our first application of TDPT we consider what happens when the perturbation V
does not in fact depend upon time. This means, of course, that the true HamiltonianH0+V
is time independent, too (since we assume H0 is time independent). If we can solve the
energy eigenvalue problem for H0 +V we can immediately write down the exact solution to
the Schrödinger equation and we don’t need to bother with approximation methods. But
we are assuming, of course, that the problem is not exactly soluble. Now, in the current
example of a time-independent perturbation, we could use the approximate eigenvalues
and eigenvectors from time independent perturbation theory to get approximate solutions
to the Schrödinger equation. This turns out to be equivalent to the results we will obtain
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below using time dependent perturbation theory. It’s actually quite a nice exercise to prove
this, but we won’t bother.

Assuming V is time independent, the integral appearing in the transition probability
can be easily computed and we get (exercise)

P (i→ n, i 6= n) =
4|Vni|2

(En − Ei)2 sin2
{

(En − Ei)t
2h̄

}
.

Assuming the matrix element Vni does not vanish, we see that the transition probability
oscillates in time. The amplitude of this oscillation is small provided the magnitude of
the transition matrix element of the perturbation is small compared to the unperturbed
energy difference between the initial and final states. This number had better be small or
the perturbative approximation is not valid.

Let us consider the energy dependence of the transition probability. At any fixed time
t > 0 the amplitude of the transition probability involves a central peak at En = Ei, which
can occur only if this energy is degenerate since we assume the initial and final states are
distinct. Away from the central peak the probability decreases quickly (in an oscillatory
fashion) as the energy of the final state differs from the energy of the initial state.

The height of the central peak of the transition probability is proportional to t2 as you
can see via l’Hospital’s rule with En = Ei; we have

P (i→ n, i 6= n,En = Ei) =
1
h̄2 |Vni|

2t2.

This means that – if there are states with En = Ei – we cannot use this formula for
an arbitrary time interval: eventually the transition probability exceeds unity (let alone
remaining small).

The width of the central peak is proportional to 1/t as you can see by noting that the
boundaries of the central peak occur at energy differences where the transition probability
vanishes:

(En − Ei)/h̄ = ±2π
t
.

Thus as the time interval becomes large enough (but not so large the approximation
breaks down) the principal probability is for transitions of the “energy conserving type”,
En ≈ Ei. For shorter times the probabilities for “energy non-conserving” transitions are
less negligible. Indeed, the probability for a transition with an energy difference ∆E at
time t is appreciable once the elapsed time satisfies

t ∼ πh̄

∆E
.

This is just a version of the time-energy uncertainty principle expressed in terms of the un-
perturbed stationary states. One sometimes characterizes the situation by saying that one
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can “violate energy conservation by an amount ∆E provided you do it over a time interval
∆t such that ∆t∆E ∼ h̄”. All this talk of “energy non-conservation” is of course purely
figurative. The true energy, represented by H0 + V is conserved, as always in quantum
mechanics when the Hamiltonian is time independent. It is only because we are consid-
ering the dynamics in terms of the unperturbed system, using the unperturbed “energy”
defined by H0, that we can speak of energy non-conservation from the unperturbed point
of view. You can see, however, why slogans like “you can violate conservation of energy
if you do it over a short enough time” might arise and what they really mean.* You can
also see that such slogans can be very misleading.

* It’s worth noting that the often heard description of the vacuum involving spontaneous
creation and destruction of particle-antiparticle pairs is an artifact of a similar perturbative
analysis.
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