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Lecture 36

Relevant sections in text: §5.2, 5.5, 5.6

Hyperfine structure (cont.)

According to degenerate perturbation theory our first step is to compute the matrix
elements of the perturbation in the degenerate subspace. For each of the basis states we
have a matrix element of the form

(constant)×
∫
d3x

1
4π
|R10(r)|2

[
3~n(~n · ~a)− ~a

r3 +
8π
3
~aδ(~r)

]
·~b,

where the vectors ~a and ~b represent the matrix elements of the magnetic moment vectors:

~a = 〈S(p)z,±|~µp|S(p)z,±〉,

~b = 〈S(e)z,±|~µe|S(e)z,±〉.

Now, it is a standard result from E&M that the quadrupole tensor,

Q(~a,~b) = (~r · ~a)(~r ·~b)− 1
3
r2~a ·~b,

here evaluated on a pair of constant vectors, has a vanishing average over the unit sphere:

1
4π

∫ π

0
dθ

∫ 2π

0
dφ sin θ Q(~a,~b) = 0.

One way to check this is to write out this tensor in spherical polar coordinates. You will
find that the angular dependence of this tensor is that of the spherical harmonic Yl=2,m,
which integrates to zero over a sphere (since it is orthogonal to constants, i.e., Y00). This
result implies (exercise) that only the delta function portion of ~B plays a role in the matrix
of the perturbation in the ground states.

We thus need to evaluate matrix elements of

Ṽ = −2µ0
3
~µe · ~µpδ(~r)

in the 4-dimensional subspace spanned by

|1, 0, 0〉 ⊗ |±〉 ⊗ |±〉.

The “translational part” of the unperturbed degenerate subspace is just the usual
ground state of hydrogen and so when computing the matrix elements of the perturbation
we get a common factor of:

〈1, 0, 0|δ(~r)|1, 0, 0〉 =
∫
d3x|ψ100(r)|2δ(~r) = |ψ100(0)|2.
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Using |ψ100(0)|2 = 1
πa3 , the 4× 4 matrix of the perturbation takes the form

ge2µ0
3πmpmea3 (~Sp · ~Se)ij ,

where a is the Bohr radius and the i j refer to the basis |S(e)z, S(p)z〉 = |+ +〉, |+−〉, | −
+〉, | − −〉. So, for example,

(~Sp · ~Se)12 = 〈+|~Se|+〉 · 〈+|~Sp|−〉 = 0.

A very straightforward computation of the matrix elements yields

(~Sp · ~Se)ij =
h̄2

4

 1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 .

The eigenvalues and (normalized) eigenvectors of this matrix are (exercise)

eigenvalue :
h̄2

4
, eigenvectors :

 1
0
0
0

 ,
1√
2

 0
1
1
0

 ,

 0
0
0
1

 ,

eigenvalue : −3h̄2

4
, eigenvectors :

1√
2

 0
1
−1
0

 .

Of course, the eigenvalue h̄2

4 is triply degenerate; any linear combination of its three eigen-
vectors is also suitable.

You can also get this result by setting

~S = ~Sp + ~Se

and computing
~Sp · ~Se =

1
2

(S2 − S2
p − S2

e ) =
1
2
S2 − 3

4
h̄2I.

Recall that the singlet and triplet states are eigenvectors of S2 with eigenvalues of 0 and
2h̄2 respectively. Thus the singlet state is an eigenvector of ~Sp · ~Se with eigenvalue −3

4 h̄
2

and the triplet states all have the eigenvalue 1
4 h̄

2. The components of the eigenvectors
in the product basis which we found above are indeed the components of the singlet and
triplet states and the eigenvalues then follow. Our particular choice of basis for the triply
degenerate eigenvalue corresponds to states of total spin of

√
2h̄ and Sz = ±h̄, 0, of course.
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We thus see that the spin-spin interaction of the electron and proton is such that (to
first order in the perturbation) the “triplet” spin states are increased in energy by an
amount

∆Etriplet =
ge2µ0h̄

2

12πmpmea3 ,

and the “singlet” spin state has its energy decreased:

∆Esinglet = − ge2µ0h̄
2

4πmpmea3 .

Taking account of the hyperfine interaction, we see that the singlet state is the correct
(zeroth order approximation to the) ground state. The difference in energy between the
singlet and triplet states is given by

∆Etriplet −∆Esinglet = 5.9× 10−6 eV.

If we consider transitions between these states associated with emission or absorption of
a photon this energy difference corresponds to a photon wavelength of about 21 cm. This
leads to an explanation for the famous “21 centimeter” spectral line that is observed in the
microwave spectrum by radio telescopes. It is attributed to vast amounts of interstellar
hydrogen undergoing transitions from the triplet to the singlet state.

Time-dependent perturbation theory

Time-dependent perturbation theory (TDPT) is an extremely important approxima-
tion technique for extracting dynamical information from a quantum system when the
Schrödinger equation cannot be solved explicitly.* TDPT can be viewed as a technique
for iteratively approximating solutions to differential equations. Many key physics results
appear via TDPT. It leads, for example, to the fundamental picture of quantum dynamics
as a sequence of transitions between (formerly) stationary states, e.g., , for atoms interact-
ing with electromagnetic radiation. It leads to “Fermi’s Golden Rule”, it leads to the idea
of “forbidden transitions”, and it yields an amusing form of the time energy uncertainty
principle. And there’s more.

The basic idea of TDPT is quite simple and is similar in spirit to TIPT. We suppose
that the Hamiltonian for a given quantum system can be decomposed into two parts,

H = H0 + V,

where H0 describes physics that is well-understood and V represents the interactions that
we are trying to understand. So, for example, H0 could be the Hamiltonian for an electron

* The usual comments apply about non-trivial physical systems and the lack of explicit
solubility.
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in the hydrogen atom, and V could represent the interaction with an incident electromag-
netic wave – an example I hope to get to. The key assumption is that the effect of V
on the dynamics is suitably small (compared to H0) so that the dynamics generated by
H can be expressed in terms of some small modifications due to the perturbation V to
the dynamics generated by H0.Unlike TIPT, TDPT is designed to approximate solutions
to the “time-dependent” Schrödinger equation. The techniques of TDPT can be applied
whether or not H, H0 and/or V depend explicitly on time. For simplicity we will restrict
attention to situations where H0 can be chosen to be time independent; V may be time
dependent.

The basic scheme is the following (see your text for an alternative description). In the
Schrödinger picture the state vector at time t satisfies

ih̄
d

dt
|ψ, t〉 = (H0 + V )|ψ, t〉.

Our goal is to find (an approximation scheme for) the state vector at time t given the
initial state. We expand |ψ, t〉 in the basis of eigenvectors of H0:

|ψ, t〉 =
∑
n

cn(t)e−
i
h̄Ent|n〉,

where
H0|n〉 = En|n〉,

and we assume the spectrum is discrete only for simplicity in our general development.
Note that we have inserted a convenient phase factor into the definition of the expansion
coefficients cn. This phase factor is such that (1) the cn(0) are the expansion coefficients
at t = 0, and (2) if V = 0 (i.e., we “turn off” or neglect the effect of the perturbation) then
the cn are constant in time (exercise). Thus, the time dependence of the cn(t) is solely due
to the perturbation.

The Schrödinger equation can be viewed as a system of ODEs for the cn(t). To see
this, substitute the expansion of |ψ, t〉 into the Schrödinger equation and take components
in the basis |n〉. We get (exercise)

ih̄
d

dt
cn(t) =

∑
m

e
i
h̄ (En−Em)tVnm(t)cm(t), Vnm = 〈n|V (t)|m〉.

Up until now everything we have done has involved no approximations. The system of
ODE’s displayed above is equivalent to the Schrödinger equation. However, when the
matrix elements of V are suitably “small”, an iterative approximation method can be used
to extract information from the Schrödinger equation when written in this form. This is
our next topic.
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