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Lecture 35

Relevant sections in text: §5.2

Degenerate Perturbation Theory

We now consider the case where the unperturbed eigenvalue is degenerate, that is,
there are d linearly independent eigenvectors |En〉

(0)
i , i = 1, 2, . . . , d for the unperturbed

eigenvalue E
(0)
n . These eigenvectors span the “degenerate subspace” D, which is a d-

dimensional vector space sitting inside the full Hilbert space of state vectors. Degeneracy
is associated with a symmetry of the (unperturbed, in this case) Hamiltonian. The full
Hamiltonian (with the perturbation included) will typically not have all the symmetry of
the unperturbed Hamiltonian. Thus the true eigenvalues that are approximated by the
unperturbed eigenvalue will usually not all be degenerate. Put differently, as the pertur-
bation is “turned on”, by mathematically varying λ from 0 to 1, some of the unperturbed
eigenvectors with the same unperturbed eigenvalue become eigenvectors with a distinct
eigenvalue, so that the degeneracy can be lifted by the perturbation. One says that the
energy levels “split” as the perturbation is “turned on”.

Consider for example an atom modeled as a particle moving in a central potential.
Its excited state energies are degenerate because the (unperturbed) Hamiltonian H0 is
rotationally invariant. In particular, since H0 commutes with ~L, it is easy to see that all
states differing only by their m values must have the same energy. In detail, if |n, l,m〉 is
an eigenvector of H0, then so is L±|n, l,m〉. Thus all such states will have the same energy.
Suppose this atom is put in a uniform electric field (Stark effect), so that the perturbation
is

V = e ~E · ~X.

This potential breaks the rotational symmetry (to just that of rotations about the direction
of ~E), so that the degeneracy is lifted. Treating V as a perturbation, the first-order
approximation to the eigenvalue/eigenvectors will not exhibit degeneracy.

But now there is a subtlety in the perturbative account of this phenomenon. Recall
that in the unperturbed system any linear combination of eigenvectors with the same
eigenvalue will again define a state with the (degenerate) energy. But in the perturbed
theory, the energies will shift and, in general, no longer be degenerate. Which of the
infinite set of vectors in D will provide the correct zeroth order approximation to the
energy eigenvectors? Somehow the perturbation theory must select a preferred basis of
unperturbed eigenvectors, namely, the ones that the correct eigenvectors collapse to as
λ → 0. The way in which this happens is the new feature appearing in “degenerate
perturbation theory”.
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Repeating our perturbative analysis but allowing for the unperturbed eigenvalue to
be degenerate leads to the following conclusions (see the text for details of the deriva-
tion). To compute the first-order corrections to the energies and eigenvectors when there
is degeneracy in the unperturbed eigenvalue E(0)

n one proceeds as follows.

Step 1

Consider the restriction, Ṽ of the perturbation V to the d-dimensional degenerate
subspace D. Ṽ is defined as follows. The action of V on a vector from D is some other
vector in the Hilbert space. Take the component of this vector along D, i.e., project this
vector back into D. This process defines a Hermitian linear mapping Ṽ from D to itself.
In practice, the most convenient way to compute Ṽ is to pick a basis for D. Compute the
matrix elements of V in this basis. One now has a d× d Hermitian matrix representing Ṽ
on D.

Step 2

Find the eigenvectors |µi〉 and eigenvalues µi, i = 1, 2, . . . , d of Ṽ . Again, it is most
convenient to do this using the matrix representation of Ṽ . For simplicity we assume all
these eigenvalues are distinct. (Otherwise the analysis gets a bit more involved.)

Step 3

There will be d separate first-order energy corrections E(1)
ni to E

(0)
n ; these are the

eigenvalues of Ṽ :
Eni ≈ E

(0)
n + µi +O(V 2).

The zeroth order approximation to the eigenvector corresponding to Eni is

|Eni〉 ≈ |µi〉+O(V ).

Step 4

The first-order correction to the eigenvectors are given by the same formula as before,
but now one excludes vectors from D in the summation.

These steps are, at first sight, rather complicated looking. It is not really that bad,
though. An example will help clear things up.

Example: Hyperfine structure

The hyperfine structure is a feature of atomic spectra which results from the interaction
of the nuclear and electronic spin. Specializing to a hydrogen atom we can model it as
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follows. We model the electron as a particle with spin 1/2, so it has both translational
and spin degrees of freedom. We will model the nucleus (proton) as a point particle, fixed
in space; so we model it as a spin 1/2 system. The total system then is defined on the
Hilbert space which is a direct product of the space of states of the electron and another
spin 1/2 system. A basis for this space is given by the product states of the form

|ψ;S(e)z,±;S(p)z,±〉 := |ψ〉 ⊗ |S(e)z,±〉 ⊗ |S(p)z±〉,

where |ψ〉 runs over a basis for the Hilbert space of a spinless particle (e.g., the energy
eigenfunctions for the hydrogen atom Hamiltonian), |S(e)z,±〉 is the usual basis for the
spin 1/2 system – here used for the electron, and |S(p)z,±〉 is the usual basis for the spin
1/2 system – here used for the proton.

The magnetic moments for the electron and proton are given by*

~µe = − e

me

~S(e), ~µp =
ge

2mp

~S(p),

where g is the proton “g-factor”, which is about 5.6.

It is a nice exercise to check that a pure point magnetic dipole (which is how we are
modeling the proton) is the source of the following magnetic field

~B(~r) =
µ0
4π

{
3~n(~n · ~µp)− ~µp

r3 +
8π
3
~µpδ(~r)

}
,

where
~n =

~r

r
.

Here the first term represents the familiar dipole term in a multipole expansion of the
magnetic field outside a localized current distribution. The second term is used to model
the limit in which one assumes the spatial dimensions of the current distribution vanish
while keeping the magnetic moment ~µp fixed. The energy of the electron in the presence
of this field is given by

V := −~µe · ~B.

Let us treat this energy as a perturbation of the usual hydrogenic energy and study the
effects of this perturbation on the ground state of hydrogen in our current model.

The unperturbed ground state of hydrogen does not “know” about the magnetic field
of the proton. Therefore its energy is the usual −13.6 eV . However, since we have taken
account of the spin degrees of freedom of both the proton and the electron we now have
a four-fold degeneracy corresponding to the different possible states of orientation of the

* For this example I am using SI units.
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spins, and superpositions thereof. The degenerate subspace D of the ground state energy
is spanned by the four orthonormal vectors

|ψground;S(e)z,±, S(p)z,±〉,

where
|ψground〉 = |n = 1, l = 0,ml = 0〉.

To be continued. . .
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